L ecture 11:
Breadth-First Search

Steven Skiena
Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400

http://www.cs.sunysb.edu/~skiena

Problem of the Day

Present correct and efficient algorithms to convert between
the following graph data structures, for an undirected graph
G with n vertices and m edges. You must give the time
complexity of each algorithm.

1. Convert from an adjacency matrix to adjacency lists.

2. Convert from an adjacency list to an incidence matrix.
An incidence matrix M has a row for each vertex and a
column for each edge, such that M i, 7] = 1 if vertex i is
part of edge j, otherwise M |i, j| = 0.

3. Convert from an incidence matrix to adjacency lists.

Traversing a Graph

One of the most fundamental graph problems is to traverse
every edge and vertex in a graph.

For efficiency, we must make sure we visit each edge at most
twice.

For correctness, we must do the traversal in a systematic way
so that we don’t miss anything.

Since a maze is just a graph, such an algorithm must be
powerful enough to enable us to get out of an arbitrary maze.

Marking Vertices

The key idea Is that we must mark each vertex when we
first visit it, and keep track of what have not yet completely

explored.
Each vertex will always be in one of the following three

states:

e undiscovered — the vertex in its initial, virgin state.

e discovered — the vertex after we have encountered it, but
before we have checked out all its incident edges.

e processed — the vertex after we have visited all its incident
edges.

Obviously, a vertex cannot be processed before we discover
It, so over the course of the traversal the state of each vertex
progresses from undiscovered to discovered to processed.

ToDoList

We must also maintain a structure containing all the vertices
we have discovered but not yet completely explored.
Initially, only a single start vertex is considered to be
discovered.

To completely explore a vertex, we look at each edge going
out of it. For each edge which goes to an undiscovered vertex,
we mark it discovered and add it to the list of work to do.
Note that regardless of what order we fetch the next vertex to
explore, each edge is considered exactly twice, when each of
its endpoints are explored.

Correctness of Graph Traver sal

Every edge and vertex in the connected component is
eventually visited.

Suppose not, ie. there exists a vertex which was unvisited
whose neighbor was visited. This neighbor will eventually be
explored so we would visit it:

Breadth-First Traversal

The basic operation in most graph algorithms is completely
and systematically traversing the graph. We want to visit
every vertex and every edge exactly once in some well-
defined order.

Breadth-first search is appropriate if we are interested in
shortest paths on unweighted graphs.

Data Structures for BFS

We use two Boolean arrays to maintain our knowledge about
each vertex in the graph.

A vertex is di scover ed the first time we visit it.

A vertex is considered pr ocessed after we have traversed
all outgoing edges from it.

Once a vertex is discovered, it is placed on a FIFO queue.
Thus the oldest vertices / closest to the root are expanded first.

bool processed[MAXV];
bool discovered[MAXV];
int parentMAXV];

Initializing BFS

initialize_search(graph *g)

{

inti;

for (i=1; i<=g— >nvertices; i++) {
processed[i] = discovered[i] = FALSE;
parent[i] = -1;

BFS Implementation

bfs(graph *g, int start)
{

queue q;

intv;

inty;

edgenode *p;

init_queue(&q);
enqueue(&q,start);
discovered[start] = TRUE;

while (empty_queue(&q) == FALSE) {
v = dequeue(&Q);
process_vertex_early(v);
processed[v] = TRUE;
p = g— >edges[v];
while (p ! = NULL) {
y=p—2>Y;
if ((processed[y] == FALSE) || g— >directed)
process_edge(v,y);
if (discovered[y] == FALSE) {

enqueue(&a,y);
discovered[y] = TRUE;
parent[y] = v;

}

p = p— >next;

}

process_vertex_late(v);

BFS Example

Exploiting Traver sal

We can easily customize what the traversal does as it makes
one official visit to each edge and each vertex. By setting the
functions to

process_vertex(int v)

{
¥

process_edge(int x, int y)

{
¥

printf(’processed vertex %d ”,v);

printf(’processed edge (%d,%d) " x,y);

we print each vertex and edge exactly once.

Finding Paths

The par ent array set within bf s() is very useful for
finding interesting paths through a graph.

The vertex which discovered vertex ¢ is defined as
parent[i].

The parent relation defines a tree of discovery with the initial
search node as the root of the tree.

Shortest Paths and BFS

In BFS vertices are discovered in order of increasing distance
from the root, so this tree has a very important property.

The unique tree path from the root to any node = € V uses
the smallest number of edges (or equivalently, intermediate
nodes) possible on any root-to-z path in the graph.

Recursion and Path Finding

We can reconstruct this path by following the chain of
ancestors from x to the root. Note that we have to work
backward. We cannot find the path from the root to =,
since that does not follow the direction of the parent pointers.
Instead, we must find the path from x to the root.

find_path(int start, int end, int parents[])
{
if ((start ==end) || (end == -1))
printf(”%d” start);
else {
find_path(start,parents[end],parents);
printf(” %d”,end);
}
}

Connected Components

The connected components of an undirected graph are the
separate “pieces” of the graph such that there is no connection
between the pieces.

Many seemingly complicated problems reduce to finding
or counting connected components. For example, testing
whether a puzzle such as Rubik’s cube or the 15-puzzle can
be solved from any position is really asking whether the graph
of legal configurations is connected.

Anything we discover during a BFS must be part of the
same connected component. We then repeat the search from
any undiscovered vertex (if one exists) to define the next
component, until all vertices have been found:

| mplementation

connected_components(graph *g)
{

intc;

inti;

initialize_search(g);

c=0;
for (i=1; i<=g— >nvertices; i++)
if (discovered[i] == FALSE) {
c=c+1;
printf("’Component %d:”,c);
bfs(g.i);

Two-Coloring Graphs

The vertex coloring problem seeks to assign a label (or color)
to each vertex of a graph such that no edge links any two
vertices of the same color.

A graph is bipartite if it can be colored without conflicts while
using only two colors. Bipartite graphs are important because
they arise naturally in many applications.

For example, consider the “had-sex-with” graph in a hetero-
sexual world. Men have sex only with women, and vice versa.
Thus gender defines a legal two-coloring.

Finding a Two-Coloring

We can augment breadth-first search so that whenever we
discover a new vertex, we color it the opposite of its parent.

twocolor(graph *g)

{

inti;

for (i=1; i<=(g— >nvertices); i++)
color[i] = UNCOLORED;

bipartite = TRUE;

initialize_search(&g);

for (i=1; i<=(g— >nvertices); i++)
if (discovered[i] == FALSE) {
color[i] = WHITE;
bfs(g,i);

process_edge(int x, int y)

{
if (color[x] == color[y]) {
bipartite = FALSE;
printf("Warning: graph not bipartite, due to (%d,%d)”,x,y);
}
color[y] = complement(color[x]);
}

complement(int color)

{
if (color == WHITE) return(BLACK);

if (color == BLACK) return(WHITE);

return(UNCOLORED);
}

We can assign the first vertex in any connected component to
be whatever color/sex we wish.

