
Lecture 10:
Graph Data Structures

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena



Sort Yourselves

Sort yourselves in alphabetical order so I can return the
midterms efficiently!



Graphs

Graphs are one of the unifying themes of computer science.
A graph G = (V, E) is defined by a set of vertices V , and
a set of edges E consisting of ordered or unordered pairs of
vertices from V .



Road Networks

In modeling a road network, the vertices may represent the
cities or junctions, certain pairs of which are connected by
roads/edges.

vertices - cities

edges - roads 

Stony Brook Green Port

Orient Point

Montauk

Shelter Island

Sag Harbor

Riverhead

Islip



Electronic Circuits

In an electronic circuit, with junctions as vertices as
components as edges.

vertices: junctions

edges: components



Flavors of Graphs

The first step in any graph problem is determining which
flavor of graph you are dealing with.
Learning to talk the talk is an important part of walking the
walk.
The flavor of graph has a big impact on which algorithms are
appropriate and efficient.



Directed vs. Undirected Graphs

A graph G = (V, E) is undirected if edge (x, y) ∈ E implies
that (y, x) is also in E.

undirected directed

Road networks between cities are typically undirected.
Street networks within cities are almost always directed
because of one-way streets.
Most graphs of graph-theoretic interest are undirected.



Weighted vs. Unweighted Graphs

In weighted graphs, each edge (or vertex) of G is assigned a
numerical value, or weight.

unweighted

5

9

2

5

74

3

7

12

weighted

3

The edges of a road network graph might be weighted with
their length, drive-time or speed limit.
In unweighted graphs, there is no cost distinction between
various edges and vertices.



Simple vs. Non-simple Graphs

Certain types of edges complicate the task of working with
graphs. A self-loop is an edge (x, x) involving only one
vertex.
An edge (x, y) is a multi-edge if it occurs more than once in
the graph.

simple non−simple

Any graph which avoids these structures is called simple.



Sparse vs. Dense Graphs

Graphs are sparse when only a small fraction of the possible
number of vertex pairs actually have edges defined between
them.

sparse dense

Graphs are usually sparse due to application-specific con-
straints. Road networks must be sparse because of road
junctions.
Typically dense graphs have a quadratic number of edges
while sparse graphs are linear in size.



Cyclic vs. Acyclic Graphs

An acyclic graph does not contain any cycles. Trees are
connected acyclic undirected graphs.

cyclic acyclic

Directed acyclic graphs are called DAGs. They arise naturally
in scheduling problems, where a directed edge (x, y) indicates
that x must occur before y.



Implicit vs. Explicit Graphs

Many graphs are not explicitly constructed and then tra-
versed, but built as we use them.

explicit implicit

A good example arises in backtrack search.



Embedded vs. Topological Graphs

A graph is embedded if the vertices and edges have been
assigned geometric positions.

embedded topological

Example: TSP or Shortest path on points in the plane.
Example: Grid graphs.
Example: Planar graphs.



Labeled vs. Unlabeled Graphs

In labeled graphs, each vertex is assigned a unique name or
identifier to distinguish it from all other vertices.

unlabeled labeled

B

C

D

E

FG

A

An important graph problem is isomorphism testing, deter-
mining whether the topological structure of two graphs are in
fact identical if we ignore any labels.



The Friendship Graph

Consider a graph where the vertices are people, and there is
an edge between two people if and only if they are friends.

George Bush

Saddam Hussain

Ronald Reagan Frank Sinatra

Nancy Reagan

This graph is well-defined on any set of people: SUNY SB,
New York, or the world.
What questions might we ask about the friendship graph?



If I am your friend, does that mean you are my
friend?

A graph is undirected if (x, y) implies (y, x). Otherwise the
graph is directed.
The “heard-of” graph is directed since countless famous
people have never heard of me!
The “had-sex-with” graph is presumably undirected, since it
requires a partner.



Am I my own friend?

An edge of the form (x, x) is said to be a loop.
If x is y’s friend several times over, that could be modeled
using multiedges, multiple edges between the same pair of
vertices.
A graph is said to be simple if it contains no loops and
multiple edges.



Am I linked by some chain of friends to the
President?

A path is a sequence of edges connecting two vertices. Since
Mel Brooks is my father’s-sister’s-husband’s cousin, there is
a path between me and him!

Steve                  Dad              Aunt Eve        Uncle Lenny       Cousin Mel



How close is my link to the President?

If I were trying to impress you with how tight I am with Mel
Brooks, I would be much better off saying that Uncle Lenny
knows him than to go into the details of how connected I am
to Uncle Lenny.
Thus we are often interested in the shortest path between two
nodes.



Is there a path of friends between any two
people?

A graph is connected if there is a path between any two
vertices.
A directed graph is strongly connected if there is a directed
path between any two vertices.



Who has the most friends?

The degree of a vertex is the number of edges adjacent to it.



Data Structures for Graphs: Adjacency Matrix

There are two main data structures used to represent graphs.
We assume the graph G = (V, E) contains n vertices and m

edges.
We can represent G using an n×n matrix M , where element
M [i, j] is, say, 1, if (i, j) is an edge of G, and 0 if it isn’t. It
may use excessive space for graphs with many vertices and
relatively few edges, however.
Can we save space if (1) the graph is undirected? (2) if the
graph is sparse?



Adjacency Lists

An adjacency list consists of a N ×1 array of pointers, where
the ith element points to a linked list of the edges incident on
vertex i.

1 2

3

45

1

2

3

4

5

2 3

1 5 3 4

2 4

2 5 3

4 1 2

To test if edge (i, j) is in the graph, we search the ith list for
j, which takes O(di), where di is the degree of the ith vertex.
Note that di can be much less than n when the graph is sparse.
If necessary, the two copies of each edge can be linked by a
pointer to facilitate deletions.



Tradeoffs Between Adjacency Lists and
Adjacency Matrices

Comparison Winner

Faster to test if (x, y) exists? matrices
Faster to find vertex degree? lists
Less memory on small graphs? lists (m + n) vs. (n2)

Less memory on big graphs? matrices (small win)
Edge insertion or deletion? matrices O(1)

Faster to traverse the graph? lists m + n vs. n2

Better for most problems? lists

Both representations are very useful and have different
properties, although adjacency lists are probably better for
most problems.



Adjancency List Representation

#define MAXV 100

typedef struct {
int y;
int weight;
struct edgenode *next;

} edgenode;



Edge Representation

typedef struct {
edgenode *edges[MAXV+1];
int degree[MAXV+1];
int nvertices;
int nedges;
bool directed;

} graph;

The degree field counts the number of meaningful entries for
the given vertex. An undirected edge (x, y) appears twice in
any adjacency-based graph structure, once as y in x’s list, and
once as x in y’s list.



Initializing a Graph

initialize graph(graph *g, bool directed)
{

int i;

g − > nvertices = 0;
g − > nedges = 0;
g − > directed = directed;

for (i=1; i<=MAXV; i++) g− >degree[i] = 0;
for (i=1; i<=MAXV; i++) g− >edges[i] = NULL;

}



Reading a Graph

A typical graph format consists of an initial line featuring
the number of vertices and edges in the graph, followed by
a listing of the edges at one vertex pair per line.
read graph(graph *g, bool directed)
{ int i;

int m;
int x, y;

initialize graph(g, directed);

scanf(”%d %d”,&(g− >nvertices),&m);

for (i=1; i<=m; i++) {
scanf(”%d %d”,&x,&y);
insert edge(g,x,y,directed);

}

}



Inserting an Edge

insert edge(graph *g, int x, int y, bool directed)
{

edgenode *p;

p = malloc(sizeof(edgenode));

p− >weight = NULL;
p− >y = y;
p− >next = g− >edges[x];

g− >edges[x] = p;

g− >degree[x] ++;

if (directed == FALSE)
insert edge(g,y,x,TRUE);

else
g− >nedges ++;

}


