

PREVIEW CONTENT

This excerpt provides early content from a book currently in
development, and is still in draft, unedited format. See additional notice
below.

This document supports a preliminary release of a software product that may be changed substantially prior to
final commercial release. This document is provided for informational purposes only and Microsoft makes no
warranties, either express or implied, in this document. Information in this document, including URL and other
Internet Web site references, is subject to change without notice. The entire risk of the use or the results from
the use of this document remains with the user. Unless otherwise noted, the companies, organizations,
products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are
fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this document may be
reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express
written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights
covering subject matter in this document. Except as expressly provided in any written license agreement from
Microsoft, the furnishing of this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

© 2010 Microsoft Corporation. All rights reserved.
Microsoft, Microsoft Press, Azure, DataTips, Expression, IntelliSense, MSDN, SharePoint, Silverlight, SQL Server,
Visual C#, Visual Studio, Windows, Windows Azure, Windows Live and Windows Server are trademarks of the

Microsoft group of companies.

All other trademarks are property of their respective owners.

Introduction

Every time we get close to a new release of Microsoft Visual Studio we can feel the excitement
in the developer community. This release of Visual Studio is certainly no different, but at the
same time we can feel a different vibe. In November 2009, at Microsoft Professional
Developer Conference in Los Angeles, participants had the chance to get their hands on the
latest beta of this Visual Studio incarnation. The developer community started to see how
different this release is compared to any of its predecessors. This might sound familiar, but
Visual Studio 2010 constitutes, in our opinion, a big leap and is a true game changer in that it
has been designed and developed from the core up.

Looking at posts in the MSDN forums and many other popular developer communities also
reveals that many of you—professional developers—are still working in previous versions of
Visual Studio. This book will show you how to move to Visual Studio 2010 and will try to
explain why it's a great time to make this move.

Who Is This Book for?

This book is for professional developers who are working with previous versions of Visual
Studio and are looking to make the move to Visual Studio 2010 Professional.

What Is the Book About?

The book is not a language primer, a language reference, or a single technology book. It's a
book that will help professional developers move from previous versions of Visual Studio
(starting with 2003 and on up). It will cover the features of Visual Studio 2010 through an
application. It will go through a lot of the exciting new language features and new versions of
the most popular technologies without putting the emphasis on the technologies themselves.
It will instead put the emphasis on how you would get to those new tools and features from
Visual Studio 2010. If you are expecting this book to thoroughly cover the new Entity
Framework or ASP.NET MVC 2, this is not the book for you. If you want to read a book where
the focus is on Visual Studio 2010 and on the reasons for moving to Visual Studio 2010, this is
the book for you.

How Will This Book Help Me Move to Visual Studio
2010?

This book will try to answer this question by using a practical approach and by going through
the new features and characteristics of Visual Studio 2010 from your point of view—that is,
from the view of someone using Visual Studio 2005, for example. To be consistent for all
points of view and to cover the same topics from all points of view, we decided to build and

use a real application that covers many areas of the product rather than show you many
disjointed little samples. This application is named Plan My Night, and we'll describe it in
detail in this Introduction.

To help as many developers as we can, we decided to divide this book into three parts:
e Part | will be for developers moving from Visual Studio 2003

e Part Il will be for developers moving from Visual Studio 2005

e Part Ill will be for developers moving from Visual Studio 2008

Each part will help developers understand how to use Visual Studio 2010 to create many
different types of applications and unlock their creativity independently of the version they
are using today. This book will be focusing on Visual Studio, but we'll also cover many
language features that make the move even more interesting.

Each part will follow a similar approach and will include these chapters:
e "Business Logic and Data”

e "Designing the Look and Feel”

e "Debugging the Application”

For example, Part |, “Moving from Microsoft Visual Studio 2003 to Visual Studio 2010,"
includes a chapter called "From 2003 to 2010: Debugging the Application.” Likewise, Part I,
“Moving from Microsoft Visual Studio 2005 to Visual Studio 2010,” includes a chapter called
“From 2005 to 2010: Debugging the Application.”

Designing the Look and Feel

These chapters will focus on comparing how the creation of the user interface has evolved
through the versions of Visual Studio. They pay attention to the design surface, the code
editor, the tools, and the different controls, as well as compare Ul validation methods. These
chapters also tackle the topic of application extensibility.

Business Logic and Data

These chapters tackle how the application is structured and demonstrate the evolution of the
tools and language features available to manage data. They describe the different application
layers. They also show how the middle-tier is created across versions and how the application
will manage caching the data as well as how to manage getting data in and from the
database.

Debugging the Application

These chapters showcase the evolution of all developer aids and debugger tools as well as
compare the different ways to improve the performance of an application. They also discuss
the important task of unit-testing your code.

Deploying Plan My Night

Part |, for developers using Visual Studio 2003, also includes one extra chapter, “From 2003 to
2010: Deploying Plan My Night.” This chapter goes through the different ways to package,
deploy, and deliver your application to your end users. The topic of updating and sending
new bits to your customers is also discussed. We feel that Parts Il and Ill, for developers using
Visual Studio 2005 and Visual Studio 2008, didn’t require a chapter on deployment.

What Is Plan My Night?

Plan My Night (PMN) is an application that is self-describing, but just to make sure we're on
the same page, here’s the elevator pitch about PMN:

Plan My Night is designed and developed to help its users plan and manage their
evening activities. It allows the user to create events, search for activities and
venues, gather information about the activities and the venues, and finally share or
produce information about them.

As the saying goes, a picture is worth a thousand words, so take a look at Plan My Night
user's interface in Figure I-1.

Figure I-1 PMN's user interface.

In its Visual Studio 2010 version, Plan My Night is built with ASP.NET MVC 2.0 using jQuery
and Ajax for Ul validation and animation. It uses the Managed Extensibility Framework (MEF)
for extending the capabilities of the application by building plug-ins: for sharing to social
networks, printing, emailing, etc. We have used the Entity Framework to create the data layer
and the Windows Server App Fabric (formerly known as codename Velocity) to cache data in
memory sent and obtained from the SQL Server 2008 database.

We figure that three pictures are better than one, so take a look at Figure |-2 for a diagram
displaying the different parts and how they interact with each other and at Figure I-3 to see
the different technologies used in building Plan My Night.

an My Night Application

Figure 1-2 Plan My Night components and interactions.

Add-In Modules

1

Figure

Cup\ (4 N (@R (@R
Plan My Night 1.0
~ 2 B
(0]
2
-
L l1S7.5 v 2
= () 5| |
(ASP.NET 4.0) | &
=
C ASP.NET MVC 2.0)
Windows Server App Fabric (previously codenamed
Velocity)
SQL SERVER 2008
17 (=) v Y

I-3 PMN 1.0 and the different technologies used in building it.

Why Should You Move to Visual Studio 2010?

There are numerous reasons to move to Visual Studio 2010 Professional, and before we dive
in into the book parts to examine them, we thought it would be good to list a few from a
high-level perspective (presented without any priority ordering).

Built-in tools for Windows 7, including multi-touch and “ribbon” Ul components.

Rich new editor built in WPF that you can highly customize to suit how you work.
Look below this list at Figure I-4 for a sneak peek.

Multi-monitor support.

New Quick Search helping to find relevant results just by quickly typing the first few
letters of any method, class, or property.

Great support for developing and deploying Microsoft Office 2010, SharePoint 2010
and Windows Azure applications.

Multicore development support allows you to parallelize your applications, and a
new specialized debugger to help you track the tasks and threads.

Improvements to the ASP.NET AJAX framework, core JavaScript IntelliSense support,
and the inclusion in Visual Studio 2010 of jQuery, the open-source library for DOM
interactions.

Multi-targeting/multi-framework support. Read Scott Guthrie's blog post to get an
understanding of this great feature:
http://weblogs.asp.net/scottqu/archive/2009/08/27/multi-targeting-support-vs-
2010-and-net-4-series.aspx.

Support for developing WPF and Silverlight applications with enhanced drag and
drop support and data binding. Great new enhancements to the designers, enabling
a higher fidelity in rendering your controls, which in turn enables you to discover
bugs in rendering before they happen at run time (which is a great improvement
from previous versions of Visual Studio). New WPF and Silverlight tools will help you
to navigate the visual tree and inspect objects in your rich WPF and Silverlight
applications.

Great support for TFS 2010 (and previous versions) using Team Explorer. This enables
you to use the data and reports that are automatically collected by Visual Studio
2010 and track and analyze the health of your projects with the integrated reports as
well as maintaining your bugs and tasks up-to-date.

Integrated support for Test-First Development. Automatic test stub generation and a
rich unit test framework are two nice test features that developers can take
advantage of for creating and executing unit tests. Visual Studio 2010 has great
extensibility points that will enable you to also use common third-party or open
source unit test frameworks directly within Visual Studio 2010.

http://weblogs.asp.net/scottgu/archive/2009/08/27/multi-targeting-support-vs-2010-and-net-4-series.aspx
http://weblogs.asp.net/scottgu/archive/2009/08/27/multi-targeting-support-vs-2010-and-net-4-series.aspx

Figure 1-4 Visual Studio New WPF Code Editor.

This is just a short list of all the new features of Visual Studio 2010 Professional; you'll
experience some of them firsthand in this book. You can get the complete list of new features
by reading the information presented in those two locations: http://msdn.microsoft.com/en-
us/library/dd547188(VS.100).aspx and http://msdn.microsoft.com/en-
us/library/bb386063(VS.100).aspx.

But the most important reason for many developers and enterprises to make the move is to
be able to concentrate on the real problems you're facing rather than spend your time
interpreting code. You'll see that with Visual Studio 2010 you can solve those problems faster.
Visual Studio 2010 provides you with new powerful design surfaces and powerful tools that
help you write less code, write it faster, and deliver it with higher quality.

http://msdn.microsoft.com/en-us/library/dd547188(VS.100).aspx
http://msdn.microsoft.com/en-us/library/dd547188(VS.100).aspx
http://msdn.microsoft.com/en-us/library/bb386063(VS.100).aspx
http://msdn.microsoft.com/en-us/library/bb386063(VS.100).aspx

Chapter 8

From 2008 to 2010: Business Logic
and Data

After reading this chapter, you will be able to

e Use Entity Framework to build a data access layer using an existing database or with the
model first approach

e Generate entity types from the Entity Data Model designer using the ADO.NET Entity
Framework POCO templates

e Learn about data caching using the Windows Server AppFabric (formerly known as
codename Velocity)

Application Architecture

The PlanMyNight application allows the user to manage his itinerary activities and share them
with others. The data stored in a SQL Server database. Activities are gathered from searches to
the Bing Maps Web services.

Let's have a look at the high-level block model of the data model for the application, which is
shown in Figure 8-1.

Presentation Layer
ASP.NET Pages

E I
N
U Contract
d Interfaces
T
1
E
S Y

Data Access Layer

{ > Caching)

—

A
SQL Server

Bing Map services

Figure 8-1 PlanMyNight application architecture diagram

Defining contracts and entities classes that are cleared of any persistence-related code
constraints will allow us to put them in an assembly that has no persistence aware code. This
will ensure a clean separation between the Presentation and Data layers.

Let's identify the contract interfaces for the major components of the PMN application:

e lltinerariesRepository will be the interface to our data store (Microsoft SQL Server
database).

e |ActivitiesRepository will allow us to search for activities (Bing Map Web services).

e |CachingProvider will provide us our data caching interface (ASP.NET Caching or
Windows Server AppFabric Caching).

Note This is not an exhaustive list of the contracts implemented in the PMN application.

PMN stores the user’s itineraries into a SQL database. Other users will be able to comment
and rate each other itineraries. Error! Reference source not found.Figure 8-2 shows the
tables used by the PMN application.

ltinerary lineraryRating
Id: bigint IDENTITY Id: bigint IDENTITY
Userld: uniqueidentifier NOT NULL Userld: uniqueidentifier NOT NULL
Name: nvarchar(100) NOT NULL ltineraryld: bigint NG T NULL (FK)
Created: smalldatetime NOTNULL |~ _| Rating: tinyint NOT NULL
Description: nvarchar{1000) MULL Timestamp: datetime NOT NULL
IsPublic: bit NOT MULL
RatingCount intNOT NULL -1
RatingSum: int NOT NULL |
Ratmg.:.:r?n.:ne?'ll:wl.l:lLL | ltineraryComment
| Id: bigintIDENTITY
; it lineraryld: bigint NOT NULL (FK)
linerary Activiies - Userld: uniqueidentifier NOT NULL
lineraryld: bigint NOT NULL (FK) Body: nvarchar(4000) NOT NULL
Activityld: varchar(250) NOT NULL Timestamp: date NOT NULL
Order it NOT NULL IpAddress: varchar(16) NOT NULL
EstimatedMinutes: smallint NOT NULL
Typeld: intNOT NULL
State: char(2) NOT NULL ZipCode
City: varchar(150) NOT NULL
Zip: varchar(50) NOT NULL ZipCode: varchar(5) NOT NULL
Latitude: float(53) NOT NULL City: varchar(150) NOT NULL
Longitude: float(53) NOT NULL St t. . har(150) NOT NULL
Location: varchar(20) NULL ate: varchar(150)

Figure 8-2 PlanMyNight datase schema

Important The PlanMyNight application uses the ASP.NET Membership feature to provide
secure credential storage for the users. The user store tables are not shown in the Error!
Reference source not found.Figure 8-2. You can learn more about this feature on MSDN:
ASP.NET 4 - Introduction to Membership.

http://msdn.microsoft.com/en-us/library/yh26yfzy(VS.100).aspx

PlanMyNight Data in Microsoft Visual Studio 2008

It would be straightforward to create the PlanMyNight in Visual Studio 2008 since it offers all
the required tools to help you to code the application. However, some of the technologies
used back then required you to write a lot more code to achieve the same goals.

Let’s take a look at how you could create the required data layer in Visual Studio 2008. One
approach would have been to write the data layer using ADO.NET DataSet or DataReader
directly. This solution offers you a great flexibility since you have complete control over the
access to the database. On the other hand, it also has some drawbacks:

e You need to know the SQL syntax.

e All queries are specialized. A change in requirement or in the tables will force you to
update all the related queries in the code.

e You need to map the properties of your entity classes using the column name which is
tedious and error prone.

¢ You have to manage the relations between tables yourself.

Figure 8-3 ADO.NET Insert query

Another approach would be to use the DataSet designer available in Visual Studio 2008.
Starting from a database with the PMN tables, you could use the TableAdapter Configuration
Wizard to import the database tables as show in Figure 8-4. The generated code offers you a
typed DataSet. One of the benefits includes type checking at design time which gives the
advantage of statement completion. There are still some pain points with this approach:

e You still need to know the SQL syntax although you have access to the Query builder
directly from the DataSet designer.

e You still need to write specialized SQL queries to match each of the requirements of your
data contracts.

e You have no control on the generated classes. For example, changing the DataSet to add
or remove a query for a table will rebuild the generated TableAdapter classes and may
change the index used for a query. This makes it difficult to write predictable code using
these generated items.

e The generated classes associated with the tables are persistence aware so you will have to
create another set of simple entities and copy the data from one to the other. This means
more processing and memory usage.

Figure 8-4 Dataset designer in Visual Studio 2008

Another technology available in Visual Studio 2008 was LINQ to SQL (L2S). With the Object
Relational Designer for L2S, it was easy to add the required database tables. This approach
gives you access to strongly typed objects and to LINQ to create the queries required to
access your data so you do not have to explicitly know the SQL syntax. This approach also has
its limits:

e LINQ to SQL works only with SQL Server database.

e You have limited control over the created entities and you cannot easily update if your
database schema change.

e The generated entities are persistence aware.

Note As of .NET 4.0, Microsoft recommends the Entity Framework as the data access solution for
LINQ to relational scenarios.

In the next sections of this chapter, you are going to explore some of the new features of
Visual Studio 2010 that will help you create the PMN data layer with less code, give you more
control on the generated code and allow to easily maintain and expand it.

Data with the Entity Framework in Visual Studio 2010

The ADO.NET Entity Framework (EF) allows you to easily create the data access layer for an
application by abstracting the data from the database and exposing a model closer to
business requirement of the application. The EF has been considerably enhanced in the .NET
Framework 4 release.

You are going to use the PlanMyNight project as an example of how to build an application
using some of the features of the EF. The next two sections demonstrate two different
approaches to generate the data model of PMN. In the first one, you are going to let the EF
generate the Entity Data Model (EDM) from an existing database. In the second part, you will
use a Model First approach where you first create the entities from the EF designer and
generate the Data Definition Language (DDL) scripts to create a database that can store your
EDM.

Visual Studio 2008 The first version of the Entity Framework was released with Visual Studio
2008 Service Pack 1. The second version of the EF included in the .NET Framework 4.0 offers many
new features to help you build your data applications. Some of these new enhancements include:

e T4 code-generation templates that you can customize to your needs.

e The possibility to define your own POCO's (Plain Old CLR Objects) to ensure that your
entities are decoupled from the persistence technology.

e Model-First development where you create a model for your entities and let Visual
Studio 2010 create your database.

e Code Only supports so you can use the Entity Framework using POCO entities and
without an EDMX file.

e Lazy Loading for related entities so they are only loaded from the database when
required.

e Self-Tracking entities that have the ability to record their own changes on the client
and send these changes so they can be applied to the database store.

In the next sections, you are going to explore some of these new features. The MSDN Data
Developer Center also offers a lot of resources about the ADO.NET Entity Framework in .NET 4.

http://msdn.microsoft.com/en-us/data/aa937723.aspx

EF: Importing an Existing Database

You are going to start with an existing solution that already defines the main projects of the
PMN application. If you have installed the companion content at the default location you will
find the solution at this location: %userprofile%\Documents\Microsoft Press\Moving to Visual
Studio 2010\Chapter 5\Code\ExistingDatabase. Double-click the PlanMyNight.sIn file.

This solution includes all the projects you can see in Figure 8-5.
e PlanMyNight.Data: Application data layer.

e PlanMyNight.Contracts: Entities and Contracts.

e PlanMyNight.Bing: Bing Map Services

e PlanMyNight.Web: Presentation Layer

e PlanMyNight.AppFabricCaching: AppFabric Caching

Figure 8-5 PlanMyNight Solution
The EF allows you to easily import an existing database. Let's walk through this process.

The first step is to add an EDM to the PlanMyNight.Data project. Right-click the
PlanMyNight.Data project, select Add, and then New Item... Select the ADO.NET Entity Data
Model item and change its name to PlanMyNight.edmx, as shown in Figure 8-6.

Figure 8-6 Add New item dialog with Add ADO.NET Entity Data Model

The first dialog of the Entity Data Model Wizard allows you to choose the model content. You
are going to generate the model from an existing database. Select Generate From Database

then click Next.

You need to connect to an existing database file. Click New Connection... and select the
%userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter
5\ExistingDatabase\PlanMyNight.Web\App_Data\PlanMyNight.mdf file.

Figure 8-7 EDM Wizard Database Connection
Leave the other fields in the form as is for now and click Next.

From the Choose Your Database Objects dialog, select the Itinerary, ItineraryActivities,
[tineraryComment, ItineraryRating, and ZipCode tables and the UserProfile view. Select the
RetrieveltinerariesWithinArea stored procedure. Change the Model Namespace to Entities as
shown in Figure 8-8.

Figure 8-8 EDM Wizard: Choose the database objects

Click Finish to generate your EDM.

Visual Studio 2008 In the first version of the EF, the names associated with the EntityType,
EntitySet and NavigationProperty were often wrong when you created a model from the database
because it was using the database table name to generate them. You propably do not want to
create an instance of /tineraryActivities entity. Instead, you probably want the name to be
singularized to ItineraryActivity. The checkbox Pluralize or singularize generated object names
shown in Figure 8-8 allows you to control whether the pluralization or singularization should be
attempted.

Fixing the Generated Data Model

You now have a model representing a set of entities matching your database. The wizard has
generated all the navigation properties associated with the foreign keys from the database.

The PMN application only requires the navigation property associated with the
ItineraryActivies table so you can go ahead and delete all the other navigation properties. You

will also need to rename the [tineraryActivities navigation property to Activities. Refer to
Figure 8-9 for the updated model.

Figure 8-9 Model imported from the PlanMyNight database

You will notice that one of the properties of the ZipCode entity has been generated with the
name ZipCodel. Let’s fix the property name by double-clicking it. Change the name to Code,
as shown in Figure 8-10.

Figure 8-10 ZipCode entity

Build the solution by pressing Ctrl+Shift+B. When looking at the output window, you will
notice two messages from the generated EDM. You can discard the first one since the
Location column is not required in PMN. The second message reads:

The table/view ‘dbo.UserProfile' does not have a primary key defined and no valid
primary key could be inferred. This table/view has been excluded. To use the entity,
you will need to review your schema, add the correct keys, and uncomment it.

By looking at the UserProfile view, you will notice that it does not explicitly define a primary
key even though the UserName column is unique.

You will have to modify the EDM manually fix the UserProfile view mapping

From the project explorer, right-click the PlanMyNight.edmx file and then select Open With...
Choose XML (Text) Editor from the Open With dialog as shown in Figure 8-11. This will open
the XML file associated with your model.

Open With - PlanhdyMight edmzx [-5-|[===a]
LChoose the prograrn youswant to use to open this file:
ADCMET Entity Data Model Designer {Default) Add..
Autormatic Editar Selector GL)
HhAL (Text) Editor
(Text) Ry
ML (Text) Editor with Encoding A
Source Code (Text) Editor
Source Code (Text) Editor With Encoding Set as Default
HTHL Editor
HTrAL Editar with Encoding
Binary Editar
Resource Editor
[0K] [Cancel

Figure 8-11 Open PlanMyNight.emdx in the XML Editor

Note You will get a warning stating that the PlanMyNight.edmx file is already open. Click Yes to
close it.

The generated code was commented out by the code generation tool because there was no
primary key defined. To allow you to use the UserProfile view from the designer, you need to
uncomment the UserProfile entity type and add the Key tag to it. Search for UserProfile in the
file. Uncomment the entity type, add a key tag and set its name to UserName and make the
UserName property not nullable. Refer to Listing 8-1 to see the updated EntityType.

Listing 8-1 UserProfile Entity Type XML Definition

<EntityType Name="UserProfile">
<Key>
<PropertyRef Name="UserName"/>
</Key>
<Property Name="UserName" Type="uniqueidentifier" Nullable="false" />
<Property Name="FullName" Type="varchar" MaxLength="500" />
<Property Name="City" Type="varchar" MaxLength="500" />
<Property Name="State" Type="varchar" MaxLength="500" />
<Property Name="PreferredActivityTypeId" Type="1int" />
</EntityType>

If you close the XML file and try to open the EDM Designer, you will get this error:

Error 11002: Entity type 'UserProfile' has no entity set.

You will need to define an entity set for the UserProfile type so that it can map the entity type
to the store schema. Open the PlanMyNight.edmx file in the XML editor so that you can
define an entity set for UserProfile. At the top of the file, just above the Itinerary entity set,
add the XML code shown in Listing 8-2.

Listing 8-2 UserProfile EntitySet XML Definition

<EntitySet Name="UserProfile" EntityType="Entities.Store.UserProfile"
store:Type="Views" store:Schema="dbo" store:Name="UserProfile">
<DefiningQuery>
SELECT
[UserProfile].[UserName] AS [UserName],
[UserProfile].[Ful1Name] AS [FullName],
[UserProfile].[City] AS [City],
[UserProfile].[State] AS [State],
[UserProfile].[PreferredActivityTypeld] as [PreferredActivityTypeld]
FROM [dbo].[UserProfile] AS [UserProfile]
</DefiningQuery>
</EntitySet>

Save the EDM XML file and reopen the EDM Designer. The Figure 8-12 shows the UserProfile
view in the Entities.Store section of the Model Browser.

Tip You can open the Model Browser from the View menu by clicking Other Windows and
selecting the Entity Data Model Browser item.

Figure 8-12 Model Browser with the UserProfile view

Now that the view is available in the store metadata, you are going to add the UserProfile
entity and map it to the UserProfile view. Right-click in the background of the EDM Designer,
select Add and then Entity...

Figure 8-13 Add UserProfile entity dialog

Complete the dialog as shown in Figure 8-13 and click OK to generate the entity.You will
need to add the remaining properties: City, State, and PreferredActiviyTypeld. To do so, right-
click the UserProfile entity, select Add, then Scalar Property. Once the property is added, set
the Type, Max Length, and Unicode field value. Table 8-1 shows the expected values for each
of the field.

Table 8-1 UserProfile Entity Properties

Name Type Max Length Unicode
FullName String 500 False
City String 500 False
State String 500 False
PreferredActivityTypeld Int32 NA NA

Now that you have created the UserProfile entity, you need to map it to the UserProfile view.
By right-clicking the UserProfile entity, select Table Mapping as shown in Figure 8-14.

Figure 8-14 Table Mapping menu item

Then select the UserProfile view from the dropdown box as shown in Figure 8-15. Ensure that
all the columns are correctly mapped to the entity properties. The UserProfile view of our
store is now accessible from the code through the UserProfile entity.

Figure 8-15 UserProfile Mapping details

Stored Procedure and Function Imports

The Entity Data Model Wizard has created an entry in the storage model for the
RetrieveltinerariesWithinArea stored procedure you selected in last step of the wizard. You
need to create a corresponding entry to the conceptual model by adding a Function Import.

From the Model Browser, open the Stored Procedures folder in the Entities.Store section.
Right-click RetrieveltineraryWithinArea, and then select Add Function Import... The Add
Function Import dialog appears as shown in Figure 8-16. Specify the return type by selecting
Entities and then the item Itinerary from the drop-down box. Click OK.

Figure 8-16 Add Function Import dialog

The RetrieveltinerariesWithinArea function import was added to the Model Browser as shown
in Figure 8-17.

Figure 8-17 Function Imports in the Model Browser

You can now validate the EDM by right-clicking in the design surface and selecting Validate.
There should be no error or warning.

EF: Model First

In the last section, we saw how to use the EF designer to generate the model by importing an
existing database. The EF Designer in Visual Studio 2010 also supports the ability to generate
the Data Definition Language (DDL) file that will allow you to create a database based on your
entity model.

You can start from empty model by selecting the Empty model option from the Entity Data
Model Wizard.

Figure 8-18 EDM Wizard: Empty Model

Open the PMN solution at this location: %userprofile%\Documents\Microsoft Press\Moving
to Visual Studio 2010\Chapter 8\Code\ModelFirst by double-clicking the PlanMyNight.sIn file.

The PlanMyNight.Data project from this solution already contains an EDM file named
PlanMyNight.edmx with some entities already created. These entities are matching the data
schema from Figure 8-2.

The Entity Model designer lets you easily add an entity to your data model. Let's add the
missing ZipCode entity to the model. From the Toolbox, drag an Entity item into the designer,
as shown in Figure 8-19. Rename the entity to ZipCode. Rename the /d property to Code and
change its type to String.

Figure 8-19 Entity Model designer

You need to add the City and State properties to the entity. Right-click the ZipCode entity,
select Add and then Scalar Property. Ensure that each property has the values shown in Table
8-2.

Table 8-2 ZipCode Entity Properties

Name Type Fixed Length Max Length | Unicode
Code String False 5 False
City String False 150 False
State String False 150 False

Add the relations between the ItineraryComment and the Itinerary entities. Right-click the
designer background, select Add and then Association...

Add Association @

Lssociation Marme:

FI_itineraryCommentltinerany

End End

Entity: Entity:

[Itinerarndmment '] [Itmeravy ']
Multiplicity: Multiplicity:

[ey -] [1eene -
[7] Mavigation Property: [] Mavigation Property:

Itinerary ItineraryComments

[T] Add foreign key properties to the TtineraryComment’ Entity
ItineraryComment can have 1(One) instance of ftinerary, B

Itinerary can have * (Mary) instances of ftineraryComment,

Figure 8-20 Add Association dialog for FK_ItineraryCommentltinerary

Visual Studio 2008 Foreign Key Associations are now included in the .NET 4.0 version of the
Entity Framework. This allow you to have Foreign properties on your entities.The Foreign Key
Associations is now the default type of association but the Independent Associations supported in
.NET 3.5 are still available.

Set the association name to FK_ItineraryCommentltinerary and the select the entity and the
multiplicity for each end, as shown in Figure 8-20. Once the association is created, double-
click association line to set the Referential Constraint as shown in Figure 8-21.

Figure 8-21 Association Referential Constraint dialogRepeat the same operations for the
FK_ItineraryltineraryRating association by setting the first end to ItineraryRating.

For the FK_ItineraryltineraryActivity association, you want to also create a navigation property
and name it Activities, as shown in Figure 8-22.

Add Association @

Assaciation Name:

FE_Itinerangdctivityltinerary

End End

Entity: Entity:

lItineraryActivity v] IItinerary v]
Multiplicity: Multiplicity:

[* iMany -] [1eone -
[] Mavigation Property: Mavigation Property:

Ttinerary Activities

[7] Add foreign key properties to the Tineranctivity' Entity

Ttinerargctivity can have 1(0One) instance of Itinerany, -

Itinerary can have * (Many) instances of inerangdctivity, Use
Itinerany Activities to access the ineransdctivity mstances.‘

Figure 8-22 Add Association dialog for FK_ItineraryActivityltinerary

Generating the Database Script from the Model

Your data model is now completed but there is no mapping or store associate to it. The EF
designer offers the possibility to generate a database script from our model.

Right-click in the designer surface and choose Generate Database From Model... as shown in
Figure 8-23.

Figure 8-23 Generate Database from Model menu item

The Generate Database Wizard requires a data connection. The wizard will use the connection
information to translate the model types to the database type and to generate a DDL script
targeting this database.

Select New Connection... and make sure the Data Source is set to Microsoft SQL Server File.
Click Browse... and select the database file located %userprofile%\Documents\Microsoft
Press\Moving to Visual Studio 2010\Chapter 8\Code\ModelFirst\Data\PlanMyNight.mdf.

Figure 8-24 Generate script database connection

Once your connection is configured, click Next to get to wizard last screen. When you click
Finish, the generated T-SQL PlanMyNight.edmx.sq| file is added to your project. The DDL
script will generate the primary and foreign key constraints for your model.

Generate Database YWizard @

J— \ Summary and Settings
S

Save DDL As: PlanbyNight.edmxsql

DoL

n

-- Entity Designer DOL Script for SOL Server 2005, 2008, and 2zure

-- Date Created: 02/03/2010 22:58:49
-- Generated from EDM file: ChUserstpascalp\Documentsyiisual Studio 20104Projects
YChapterSyPlanhyNight. Data\PlanhtyMjght.edrmx

SET QUOTED_IDEMTIFIER OFF;

GO

USE [PlankiyMight]:

GO

IF SCHEMA_ID{MN dba’) IS WULL EXECUTE(N'CREATE SCHEMA, [dbo]
GO

-- Dropping existing FOREIGN KEY constraints

Figure 8-25 Generated T-SQL file

The EDM is also updated to ensure your newly created store is mapped to the entities. You
could now use the generated DDL script to add the tables to the database. You now have a
data layer that expose strongly typed entities that you can use in your application.

Important Generating the complete PMN database would require adding the remaining tables,
stored procedure and triggers used by the application. Instead of performing all these operations,
we will go back to the solution we had at the end of the “EF: Importing an Existing Database”
section.

POCO Templates

The EDM Designer uses T4 templates to generate the entities code. So far, we have let the
designer create the entities using the default templates. You can take a look at the code
generated by opening the PlanMyNight.Designer.cs file associated to PlanMyNight.edmx. The
generated entities are based on the EntityObject type and decorated with attributes to allow
the EF to manage them at run time.

Note T4 stands for Text Template Transformation Toolkit. T4 support in Visual Studio 2010
allows you to easily create your own templates and generate any type of text file (Web, resource
or source). To learn more about the code generation in Visual Studio 2010, visit Code Generation
and Text Templates.

http://msdn.microsoft.com/en-us/library/bb126445(VS.100).aspx
http://msdn.microsoft.com/en-us/library/bb126445(VS.100).aspx

The EF also supports POCO entity types. POCO classes are simple objects with no attributes or
base class related to the framework. (Listing 8-3, in the next section, shows the POCO class for
the ZipCode entity.) The EF uses the names of the types and the properties of these objects to
map them to the model at run time.

Note POCO stands for Plain-Old CLR Objects.

ADO.NET POCO Entity Generator

Let's re-open the %userprofile%\Documents\Microsoft Press\Moving to Visual Studio
2010\Chapter 8\Code\ExistingDatabase\PlanMyNight.sIn file.

Select the PlanMyNight.edmx file, right-click in the design surface and choose Add Code
Generation Item... This will open a dialog shown in Figure 8-26 where you can select the
template you want to use. Select the ADO.NET POCO Entity Generator template and name it
PlanMyNight.tt. Then click the Add button.

Figure 8-26 Add New Item dialog

Two files have been added to your project, as shown in Figure 8-27. These files replace the
default code-generation template and the code is no longer generated in the
PlanMyNight.Designer.cs file.

Figure 8-27 Added templates

The PlanMyNight.tt template produces a class file for each entity in the model. Listing 8-3
shows the POCO version of the ZipCode class.

Listing 8-3 POCO version of the ZipCode Class

namespace Microsoft.Samples.PlanMyNight.Data
{
public partial class ZipCode
{
#region Primitive Properties
public virtual string Code
{
get;
set;
}
public virtual string City
{
get;
set;
}
public virtual string State
{
get;
set;
}

#endregion

The other file, PlanMyNight.Context.cs, generates the ObjectContext object for the
PlanMyNight.edmx model. This is the object we are going to use to interact with the
database.

Tip The POCO templates will automatically update the generated classes to reflect the changes
to your model when you save the .edmx file.

Moving the Entity Classes to the Contracts Project

We have designed the PMN application architecture to ensure that the presentation layer was
persistence ignorant by moving the contracts and entity classes to an assembly that has no
reference to the storage.

Visual Studio 2008 Even though it was possible to extend the XSD processing with code
generator tools, it was not easy and you had to maintain these tools. The EF uses T4 templates to
generate both the database schema and the code. These templates can easily be customized to
your needs.

The ADO.NET POCO tempilates split the generation of the entity classes to a separate
template allowing us to easily move these entities to a different project.

You are going to move the PlanMyNight.tt file to the PlanMyNight.Contracts project. By
right-clicking PlanMyNight.tt file, select Cut. Right-click the Entities folder in the
PlanMyNight.Contracts project and select Paste.

Figure 8-28 POCO Template moved to the Contracts Project

The PlanMyNight.tt template relies on the metadata from the EDM model to generate the
entity type’'s code. You need to fix the relative path used by the template to access the EDMX
file.

Open the PlanMyNight.tt template and locate the line:

string inputFile = @"PlanMyNight.edmx";

Fix the file location so it points to the PlanMyNight.edmx file in the PlanMyNight.Data project:
string inputFile = @"..\..\PlanMyNight.Data\PlanMyNight.edmx";

The entity classes are regenerated once you save the template.

You also need to update the PlanMyNight.Context.tt template since the entity classes are now
in the Microsoft.Samples.PlanMyNight.Entities namespace instead of the
Microsoft.Samples.PlanMyNight. Data namespace. Open the PlanMyNight.Context.tt file and
update the using section to include the new namespace:

using System;

using System.Data.Objects;

using System.Data.EntityClient;
using Microsoft.Samples.PlanMyNight.Entities;

Build the solution with Ctrl+Shift+B. The project should now compile successfully.

Getting It All Together

Now that you have created the generic code layer to interact with your SQL database, you are
ready to start implementing the functionalities specific to the PMN application. In the next
sections, you are going to walk through this process, briefly look at the getting data from the
Bing Maps services and get a quick introduction to the Windows Server AppFabric Caching
feature used in PMN.

There is a lot of plumbing pieces of code required to get this all together. To simplify the
process, you are going to use an updated solution where the contracts, entities and most of
the connecting pieces to the Bing Maps services have been coded. The solution will also
include the PlanMyNight.Data.Test project to help you validate the code from the
PlanMyNight.Data project.

Note Testing in Visual Studio 2010 will be covered in Chapter 10.

Getting Data from the Database

At the beginning of this chapter, we have decided to group the operations on the Itinerary
entity into the lltinerariesRepository repository interface. Some of these operations are:

e Searching for Itinerary by Activity

e Searching for Itinerary by ZipCode

e Searching for Itinerary by Radius

e Adding a new ltinerary

Let's take a look at the corresponding methods in the lltinerariesRepository interface:

e SearchByActivity will allow searching for itineraries by activity and returning a page of
data.

e SearchByZipCode will allow searching for itineraries by zip code and returning a page of
data.

e SearchByRadius will allow searching for itineraries from a specific location and returning a
page of data.

e Add will allow to add itinerary to the database.

Open the PMN solution at this location: %userprofile%\Documents\Microsoft Press\Moving
to Visual Studio 2010\Chapter 8\Code\Final by double-clicking the PlanMyNight.sIn file.

Select the PlanMyNight.Data project and open the ItinerariesRepository.cs file. This is the
[ItinerariesRepository interface implementation. Using the PlanMyNightEntities Object
Context you have generated earlier, you will be able to write LINQ queries against your model
and the EF will translate these queries to native T-SQL that will be executed against the
database.

Navigate to the SearchByActivity function definition. This method must return a set of
itineraries marked as public where one of their activities has the specified activity ID. You also
need to order the result itinerary list by the rating field.

Using standard LINQ operators, you can implement the SearchByActivity as shown in Listing
8-4. Add the highlighted code to the SearchByActivity method body.

Listing 8-4 SearchByActivity Implementation

public PagingResult<Itinerary> SearchByActivity(string activityld, int pageSize, 1int
pageNumber)
{

using (var ctx = new PlanMyNightEntities())

{

ctx.ContextOptions.ProxyCreationEnabled = false;

var query = from itinerary in ctx.Itineraries.Include("Activities')
where itinerary.Activities.Any(t => t.ActivityIld == activityId)
&& ditinerary.IsPublic
orderby itinerary.Rating
select itinerary;

return PageResults(query, pageNumber, pageSize);
}
}

Note The result paging is implemented in the PageResults method.

private static PagingResult<Itinerary> PageResults(IQueryable<Itinerary> query, int
page, int pageSize)
{

int rowCount = rowCount = query.Count(Q);

if (pageSize > 0)

{
query = query.Skip((page - 1) * pageSize)
.Take(pageSize) ;
}
var result = new PagingResult<Itinerary>(query.ToArray())
{

PageSize = pageSize,
CurrentPage = page,
TotalItems = rowCount
1
return result;

}

An IQueryable<Itinerary> is passed to this function so it can add the paging to the base query
composition. Passing an /Queryable instead on I[Enumerable ensure that T-SQL created for the
query against the repository will only be generated when query.ToArray() is called.

The SearchByZipCode function method is similar to the SearchByActivity method but it also
adds a filter on the Zip Code of the activity. Here again, LINQ support makes it easy to
implement as shown in Listing 8-5. Add the highlighted code to the SearchByZipCode method
body.

Listing 8-5 SearchByZipCode Implementation

public PagingResult<Itinerary> SearchByZipCode(int activityTypeld, string zip, int
pageSize, int pageNumber)
{

using (var ctx = new PlanMyNightEntities(Q))

{

ctx.ContextOptions.ProxyCreationEnabled = false;

var query = from itinerary in ctx.Itineraries.Include("Activities')
where itinerary.Activities.Any(t => t.Typeld == activityTypeld &&
t.Zip == zip)
&& ditinerary.IsPublic
orderby itinerary.Rating
select itinerary;

return PageResults(query, pageNumber, pageSize);

The SearchByRadius function calls the RetrieveltinerariesWithinArea import function that was
mapped to a stored procedure. It then loads the activities for each itinerary found. You can
copy the highlighted code in Listing 8-6 to the SearchByRadius method body in the
[tinerariesRepository.cs file.

Listing 8-6 SearchByRadius Implementation

public PagingResult<Itinerary> SearchByRadius(int activityTypeId, double longitude,
double Tatitude, double radius, int pageSize, int pageNumber)

{
using (var ctx = new PlanMyNightEntities())

{
ctx.ContextOptions.ProxyCreationEnabled = false;

// Stored Procedure with output parameter

var totalOutput = new ObjectParameter("total", typeof(int));

var items = ctx.RetrievelItinerariesWithinArea(activityTypeld, latitude,
longitude, radius, pageSize, pageNumber, totalOutput).ToArray(Q);

foreach (var +item 1in 1items)

{
item.Activities.AddRange(this.Retrieve(item.Id).Activities);

}
int total = totalOutput.Value == DBNull.Value ? 0 : (int)totalOutput.Value;

return new PagingResult<Itinerary>(items)

{
TotalItems = total,
PageSize = pageSize,
CurrentPage = pageNumber

1

The Add method allows adding Itinerary to the data store. Implementing this functionality
becomes trivial since our contract and our Context Object are using the same entity object.
Copy and paste the highlighted code in Listing 8-7 to the Add method body.

Listing 8-7 Add Implementation

public void Add(Itinerary itinerary)

{
using (var ctx = new PlanMyNightEntities())

{
ctx.Itineraries.AddObject(itinerary);
ctx.SaveChanges();
}
}

Here you have it! You have been able to complete the ItinerariesRepository implementation
using the Context Object generated using the EF designer. Run all the tests in the solution by
pressing CTRL+R, A. The tests related to the ItinerariesRepository should all succeed.

Parallel Programming

With the advance in the multi-core and many cores computing, it is becoming more and
more important for today’s developer to be able to write parallel applications. Visual Studio
2010 and the .NET Framework 4.0 are bringing new ways to express concurrency in
applications. The Task Parallel Library (TPL) is now part of the Base Class Library (BCL) for the
.NET Framework. This means that every .NET application can now access the TPL without
adding any assembly reference.

PMN stores only the Bing Activity Id for each ItineraryActivity to the database. When it's time
to retrieve the entire Bing Activity object, a function that iterates through each of the
[tineraryActivity for the current Itinerary is used to populate the Bing Activity entity from the
Bing Maps Web service.

One way of performing this operation would be to sequentially call the service for each
activity in the Itinerary as shown in LISTING 8-8. This function will wait for each call to
RetrieveActivity() to complete before making another call making it's execution time linear.

Listing 8-8 Activity Sequential Retrieval

public void PopulateltineraryActivities(Itinerary itinerary)

{
foreach (var item in itinerary.Activities.Where(i => i.Activity == null))
{
item.Activity = this.RetrieveActivity(item.ActivityId);
}
}

In the past if you wanted to parallelize this task, you would have had to use threads and hand
off work to them. With the TPL, all you have to do now is to use a Parallel.ForEach that will
take care of the threading for you as seen in Listing 8-9.

Listing 8-9 Activity Parallel retrieval

public void PopulateltineraryActivities(Itinerary itinerary)

{
Parallel.ForEach(itinerary.Activities.Where(i => i.Activity == null),
item =>
{
item.Activity = this.RetrieveActivity(item.ActivityId);
b;

See Also The .NET Framework 4.0 now includes the Parallel Linq libraries (in System.Core.dll).
PLing introduce the .AsParallel() extension to perform parallel operations in Ling queries. You
can also easily enforce the treatment of a data source as if it was ordered by using the
AsOrdered() extensions. Some new thread safe collections have also been added in the
System.Collections.Concurrent namespace. You can learn more about these new features from
Parallel Computing on MSDN.

AppFabric Caching

PMN is a data-driven application getting its data from the application database and the Bing
Maps Web services. One of the challenges that could be faced when building a Web
application is to manage the needs the support a large number of users, performance and
response time. The operations to the data store and to the services to search for activities can
increase the server resources usage dramatically for items that are shared across many users.
For example, many users have access to the public itineraries so displaying these will generate
numerous the calls to the database for the same items. Implementing caching at the Web tier
will help reduce the resources utilization at the data store and help mitigate latency for
recurring searches to the Bing Maps Web services. Figure 8-29 shows the architecture for an
application implementing a caching solution at the front end server.

Application /
Web Tier

Bing Map services Data Tier

Figure 8-29 Typical Web application architecture

Using this approach would reduce the pressure on the data layer but the caching is still
coupled to a specific server serving the request. Each Web tier server will have its own cache
and it is still possible to end up with an uneven distribution of the processing to these servers.

Windows Server AppFabric Caching offers a distributed, in-memory cache platform. The
AppFabric client library allows the application to access the cache as a unified view event if
the cache is distributed across multiple computers as shown in Figure 8-30. The API provides

http://msdn.microsoft.com/en-us/concurrency/default.aspx

simple get and set methods to retrieve and store any serializable CLR objects easily. The
AppFabric cache allows adding cache computer on demand thus making it possible to scale in
a manner that is transparent to the client. Another benefit is that the cache can also share
copies of the data across the cluster protecting data against failure.

Application /
Web Tier
Application
2
Server 1 Server 2 Server N
AppFabric
? ? Cache Tier
z i
z F
v Y A A
Bing Map services Data Tier

Figure 8-30 Web application using Windows Server AppFabric Caching

See Also Windows Server AppFabric caching is available as a set of extensions to the .NET
Framework 4.0. For more information about how to get, install and configure Windows Server
AppFabric, please visit Windows Server AppFabric.

See Also PMN can be configured to use either ASP.NET caching or Windows Server AppFabric
caching. A complete walkthrough describing how to add Windows Server AppFabric caching to
PMN is available here: PMN: Adding Caching using Velocity

Summary

In this chapter, you have used a few of the new Visual Studio 2010 features to structure the
data layer of the PlanMyNight application using the Entity Framework v4.0 to access a
database. You have also been introduced to the automated entity generation using the
ADO.NET Entity Framework POCO templates and to the Windows Server AppFabric caching

http://msdn.microsoft.com/en-us/windowsserver/ee695849.aspx
http://channel9.msdn.com/learn/courses/VS2010/ASPNET/EnhancingAspNetMvcPlanMyNight/Exercise-1-Adding-Caching-using-Velocity/

extensions. In the next chapter, you are going to explore how the ASP.NET MVC framework
and the Managed Extensibility Framework can help you build great Web applications.

Chapter 9
From 2008 to 2010: Designing the
Look and Feel

After reading this chapter, you will be able to
e Create an ASP.NET MVC controller that interacts with the data model

e Create an ASP.NET MVC View that displays data from the controller and validates user
input

e Extend the application with an external plug-in using the Managed Extensibility
Framework

Web application development in Microsoft Visual Studio has certainly made significant
improvements over the years since ASP.NET 1.0 was released. Visual Studio 2008 introduced
official support for AJAX enabled web pages, Language Integrated Query (LINQ), plus many
other improvements to help developers create efficient applications that were easy to
manage.

The spirit of improvement to assist developers in creating world-class applications is very
much alive in Visual Studio 2010. In this chapter we will explore some of the new features as
we add functionality to the Plan My Night companion application.

Note The companion application is an ASP.NET MVC 2 project, but a Web developer has a choice
in Visual Studio 2010 to use this new form of ASP.NET application, or the more traditional ASP.NET
(referred to in the community as Web Forms for distinction). ASP.NET 4.0 has gotten many
improvements to help developers and is still a very viable approach to creating Web applications.

We will be using a modified version of the companion application’s solution to work our way
through this chapter. If you installed the companion content in the default location, the
correct solution can be found at: Documents\Microsoft Press\Moving to Visual Studio
2010\Chapter 9\ and look for a folder called UserInterface-Start.

Introducing the PlanMyNight.Web Project

Note ASP.NET MVC 1.0 Framework is available as an extension to Visual Studio 2008, however
this chapter has been written under the context of the user having a default installation of Visual
Studio 2008, which only had support for ASP.NET Web Forms 3.5 projects.

The user interface portion of Plan My Night in Visual Studio 2010 was developed as an
ASP.NET MVC application, the layout of which will differ from what a developer might be
accustomed to when developing an ASP.NET Web Forms application in Visual Studio 2008.
Some items in the project (as seen in Figure 9-1) will look familiar (like Global.asax), but others
are completely new, and some of the structure is required by the ASP.NET MVC Framework.

Figure 9-1 PlanMyNight.Web project view.
Items required by ASP.NET MVC are:

e Areas This folder is used by the ASP.NET MVC framework to organize large Web
applications into smaller components, without using separate solutions or projects.
This feature is not used in the Plan My Night application but is called out because
this folder is created by the MVC project template.

e Controllers During request processing, the ASP.NET MVC framework looks for
controllers in this folder to handle the request.

e Views The Views folder is actually a structure of folders. The layer immediately
inside the Views folder is named for each of the classes found in the Controllers
folder, plus a Shared folder. The Shared subfolder is for common Views, Partial
Views, Master Pages, and anything else to be available to all controllers.

See Also More information about ASP.NET MVC'’s components, as well as how its request
processing differs from ASP.NET Web Forms, can be found at http://asp.net/mvc.

In most cases, the web.config is the last file in a project’s root folder. However, it has gotten a
much needed update in Visual Studio 2010: Web.config Transformation. This feature allows
for a base web.config file to be created but then have build-specific web.config files override

http://asp.net/mvc

the settings of the base at build, deployment, and run time. These files visually appear under
the base web.config file, as seen in Figure 9-2.

Figure 9-2 Web.config file with build-specific files expanded.

When working on a project in Visual Studio 2008, remember needing to remember not to
overwrite the web.config with your debug settings? Or needing to remember to update the
web.config when it was published for retail build with the correct settings? This is no longer an
issue in Visual Studio 2010. Settings set in the web.config.retail file will be used during retail builds
to override the values in web.config, and the same goes for the web.config.debug in debug builds.

Other sections of the project include

e Content A collection of folders containing images, scripts and style files.

e Helpers Miscellaneous classes, containing a number of Extension methods,
adding functionality to types used in the project.

e Infrastructure Items related to dealing with the lower level infrastructure of
ASP.NET MVC (for example: Caching and Controller Factories, are contained in this
folder.

e ViewModels Data Entities filed out by Controller classes and used by Views to
display data.

Running the Project

If you compile and run the project, you should see a screen similar to Figure 9-3:

Figure 9-3 Default page of Plan My Night application.

The searching functionality and the ability to organize an initial list of itinerary items all works,
but if you attempt to save the itinerary you are working on, or if you log in with Windows Live
ID, the application will return a 404 Not Found error screen (as shown in Figure 9-4).

Figure 9-4 Error screen returned when logging into the Plan My Night application.

This is because currently the project does not include an account controller to handle these
requests.
Creating the Account Controller

The AccountController class provides some critical functionality to the companion Plan My
Night application:

e It handles signing users in and out of the application (via Windows Live ID).

e It provides actions for displaying and updating user profile information.

To create a new ASP.NET MVC controller:

1. Navigate the Solution explorer to the Controllers folder in the PlanMyNight.Web
project, and click the right mouse button.

2. Open the Add submenu and select the Controller item.

3. Fill in the name of the controller as AccountController.

Note Leave the check box for “Add action methods for Create, Update and Delete scenarios”
blank. Checking the box inserts some “starter” action methods, but because we will not be using
the default methods, there is no reason to create them.

Once you have clicked the Add button in the Add Controller dialog box, you should have a
basic AccountController class open, with a single Index() method in its body:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Mvc;

namespace Microsoft.Samples.PlanMyNight.Web.Controllers
{
public class AccountController : Controller
{
//
// GET: /Account/

public ActionResult Index()
{

return View();

Visual Studio 2008 A difference to be noted from developing ASP,NET Web Forms applications
in Visual Studio 2008, is that ASP.NET MVC applications do not have a companion code behind file
for each of their aspx files. Controllers like the one we are currently creating perform the logic
required to process input and prepare output. This allows for a clear separation of display and
business logic, and is a key aspect of ASP.NET MVC.

Implementing the Functionality

To communicate with any of the data layer and services (the Model), we will need to add
some instance fields and initialize them. Before that, we need to add some namespaces to our
using block:

Using System.IO;

using Microsoft.Samples.PlanMyNight.Data;

using Microsoft.SampTles.PlanMyNight.Entities;

using Microsoft.Samples.PlanMyNight.Infrastructure;
using Microsoft.Samples.PlanMyNight.Infrastructure.Mvc;
using Microsoft.Samples.PlanMyNight.Web.ViewModels;
using WindowsLiveld;

Now, let’s add the instance fields. These fields are interfaces to the various section of our
Model.

public class AccountController : Controller

{
private readonly IWindowsLivelLogin windowsLogin;
private readonly IMembershipService membershipService;
private readonly IFormsAuthentication formsAuthentication;
private readonly IReferenceRepository referenceRepository;
private readonly IActivitiesRepository activitiesRepository;

Note Using interfaces to interact with all external dependencies allows for better portability of the
code to various platforms. Also, during testing, dependencies can be mocked much easier, making
for more efficient isolation of a specific component.

As mentioned, these fields represent parts of the Model this controller will interact with in
order to meet its functional needs. The general descriptions for each of the interfaces are:

e IWindowsLivelLogin Provides functionality for interacting with Windows Live 1D
service.

e IMembershipService User Profile information and authorization methods. In our
companion application, it is an abstraction of the ASP.NET Membership Service.

e [FormsAuthentication ASP.NET Forms Authentication abstraction.

o IReferenceRespository Reference resources, like lists of states and other model
specific information.

o lActivitiesRespository Interface for retrieving and updating activity information.

We are going to add two constructors to this class: one for general run time use, which
utilizes the ServiceFactory class to get references to the needed interfaces, and one to enable
tests to inject specific instances of the interfaces to use.

public AccountController()
this(
new ServiceFactory() .GetMembershipService(),
new WindowsLivelLogin(true),
new FormsAuthenticationService(),
new ServiceFactory() .GetReferenceRepositoryInstance(),
new ServiceFactory().GetActivitiesRepositoryInstance())
{
}
pubTlic AccountController(
IMembershipService membershipService,
IWindowsLivelLogin windowsLogin,
IFormsAuthentication formsAuthentication,
IReferenceRepository referenceRepository,
TActivitiesRepository activitiesRepository)

this.membershipService = membershipService;
this.windowsLogin = windowsLogin;
this.formsAuthentication = formsAuthentication;
this.referenceRepository = referenceRepository;
this.activitiesRepository = activitiesRepository;

Authenticating the User

The first real functionality we are going to implement in this controller is that of signing in
and out of the application. Most of the methods that we'll implement later require
authentication, so it makes a good place to start.

The companion application uses a few technologies together at the same time to give the
user a smooth authentication experience: Windows Live ID, ASP.NET Forms Authentication,
and ASP.NET Membership Services. These three technologies are utilized in the LivelD action
we are going to implement next.

Start by creating the following method, in the AccountController class:

public ActionResult LiveId()
{

return Redirect(“~/");

}

This method will be the primary action invoked when interacting with the Windows Live ID
services. Right now, if it is invoked, it will just redirect the user to the root of the application.

Note The call to Redirect returns a RedirectResult, and while this example uses a string to define
the target of the redirection, a number of overloads can be used for different situations.

A few different types of actions can be taken when Windows Live ID returns a user to our
application. The user could be signing into Windows Live ID, could be signing out, or could be
clearing the Windows Live ID cookies. Windows Live ID uses a query string parameter called
action on the URL when it returns a user, so we will use a switch to branch the logic
depending on the value of the parameter.

Add the following to the Liveld method:

switch (action)

{
case "logout":
this.formsAuthentication.SignOut();
return Redirect("~/");
case "clearcookie":
this.formsAuthentication.SignOut();
string type;
byte[] content;
this.windowsLogin.GetClearCookieResponse(out type, out content);
return new FileStreamResult(new MemoryStream(content), type);
}

Note Full documentation of the Windows Live ID system can be found on the http://dev.live.com/
website.

The code we just added handles the two sign-out actions for Windows Live ID. In both cases
we use our [FormsAuthentication interface to remove the ASP.NET Forms Authentication
cookie so that any future http requests (until they sign in again) will not be considered
authenticated. In the second case we went one step further to clear the Windows Live ID
cookies (the ones that remember your login name, but not your password).

Handling the sign-in scenario requires a bit more code, because we have to check whether
the authenticating user is in our Membership Database and, if not, create a profile for them.

http://dev.live.com/

However, before that, we must pass the data Windows Live ID sent us to our Windows Live ID
interface so that it can validate the information and give us a WindowsLiveLogin.User object:

default:
// Tlogin
NameValueCollection tokenContext;
if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
{
tokenContext = Request.Form;
}
else
{
tokenContext = new NameValueCollection(Request.QueryString);
tokenContext["stoken"] =
System.Web.HttpUtility.Ur1Encode (tokenContext["stoken"]);
}

var TliveIldUser = this.windowsLogin.ProcessLogin(tokenContext);

At this point in the case for logging in, either the liveldUser will be a reference to an
authenticated WindowsLiveLogin.User object or it will be null. With this in mind we can add
our next section of the code, which will take action when the liveldUser value is not null.

if (liveldUser != null)

{

var returnUrl = livelIdUser.Context;

var userId = new Guid(liveIdUser.Id).ToString(Q);

if (!this.membershipService.ValidateUser(userId, userId))

{
this.formsAuthentication.SignIn(userld, false);
this.membershipService.CreateUser(userId, userId, string.Empty);
var profile = this.membershipService.CreateProfile(userId);
profile.FullName = "New User";
profile.State = string.Empty;
profile.City = string.Empty;
profile.PreferredActivityTypeld = 0;
this.membershipService.UpdateProfile(profile);
if (string.IsNul1OrEmpty(returnUr1)) returnUrl = null;
return RedirectToAction("Index", new { returnUrl = returnUrl });

}

else

{
this.formsAuthentication.SignIn(userId, false);
if (string.IsNul1OrEmpty(returnUr1)) returnUrl = "~/";
return Redirect(returnurl);

}

}
break;

The call to the ValidateUser method on the IMembershipService reference allows the
application to check whether the user has been to this site before and if there will be a profile

for them. Because the user is authenticated with Windows Live ID, we are using their ID value
(which is a guid) as both the user name and password to the ASP.NET Membership Service.

If the user does not have a user record with the application, we create one by calling the
CreateUser method and then also have a user settings profile created via the CreateProfile.
The profile is filled with some defaults, saved back to its store, and the user is redirected to
the primary input page so that they can update the information.

Note Controller.RedirectToAction determines which URL to create based off of the combination of
input parameters. In this case we want to redirect the user to the /ndex action of this controller,
along with passing the current return URL value.

The other action that takes place in this code is that the user is signed into ASP.NET Forms
authentication so that a cookie will be created, providing identity information on future
requests that require authentication.

The settings profile is managed by ASP.NET Membership Services as well and is declared in
the web.config file of the application:

<system.web>

<profile enabled="true">

<properties>

<add name="FulTName" type="string" />

<add name="State" type="string" />

<add name="City" type="string" />

<add name="PreferredActivityTypeld" type="int" />
</properties>

<providers>

<clear />

<add name="AspNetSqlProfileProvider" type="System.Web.Profile.SqlProfileProvider,
System.Web, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f1ld50a3a"
connectionStringName="ApplicationServices" applicationName="/" />

</providers>
</profile>

</system.web>

At this point the LivelD method is complete and should look like what follows below. The
application can now take authentication information from Windows Live ID, prepare an
ASP.NET MembershipService profile, and create an ASP.NET Forms Authentication ticket.

public ActionResult LiveId()
{
switch (action)
{
case "logout":
this.formsAuthentication.SignOut(Q);
return Redirect("~/");

case "clearcookie":

this.formsAuthentication.SignOut(Q);

string type;

byte[] content;

this.windowsLogin.GetClearCookieResponse(out type, out content);
return new FileStreamResult(new MemoryStream(content), type);

default:

// login
NameValueCollection tokenContext;
if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
{
tokenContext = Request.Form;

}

else

{
tokenContext = new NameValueCollection(Request.QueryString);
tokenContext["stoken"] =
System.Web.HttpUtility.UrlEncode(tokenContext["stoken"]);

var TliveldUser = this.windowsLogin.ProcessLogin(tokenContext);

if (liveldUser != null)

{

var returnUrl = livelIdUser.Context;

var userId = new Guid(liveIdUser.Id).ToString(Q;

if (!this.membershipService.ValidateUser(userId, userId))

{
this.formsAuthentication.SignIn(userld, false);
this.membershipService.CreateUser(userId, userId, string.Empty);
var profile = this.membershipService.CreateProfile(userId);
profile.FullName = "New User";
profile.State = string.Empty;
profile.City = string.Empty;
profile.PreferredActivityTypeld = 0;
this.membershipService.UpdateProfile(profile);
if (string.IsNullOrEmpty(returnUr1)) returnUrl = null;
return RedirectToAction("Index", new { returnUrl = returnUrl });

}

else

{
this.formsAuthentication.SignIn(userId, false);
if (string.IsNul1OrEmpty(returnUr1)) returnUrl = "~/";

return Redirect(returnurl);
}
}
break;

return Redirect(“~/");

Of course, the user has to be able to get to the Windows Live ID login page in the first place
before logging in. Currently in the Plan My Night application, there is a Windows Live ID login
button. However, there are cases where the application will want the user to be redirected to
the login page from code. To cover this scenario, we need to add a small method called Login
to our controller:

public ActionResult Login(string returnUrl)

{
var redirect = HttpContext.Request.Browser.IsMobileDevice ?
this.windowsLogin.GetMobileLoginUrl(returnUrl) :
this.windowsLogin.GetLoginUr1(returnUrl);
return Redirect(redirect);
}

This method simply retrieves the login URL for Windows Live and redirects the user to that
location. This also satisfies a configuration value in our web.config file for ASP.NET Forms
Authentication, in that any request requiring authentication will be redirected to this method:

<authentication mode="Forms">
<forms loginUrl="~/Account/Login" name="XAUTH" timeout="2880" path="~/" />
</authentication>

Retrieving the Profile for the Current User

Now with the authentication methods defined, which satisfies our first goal for this
controller—signing users in and out in the application—we can move on to retrieving data for
the current user.

The Index method, which is the default method for the controller, will be where we retrieve
the current user's data and return a view displaying that data. The Index method that was
initially created when the AccoutController class was created should be replaced with the
following:

[Authorize()]
[AcceptVerbs(HttpVerbs.Get)]
public ActionResult Index(string returnUrl)

{
var profile = this.membershipService.GetCurrentProfile();
var model = new ProfileViewModel

{

Profile = profile,

ReturnUrl = returnUrl ?? this.GetReturnUrl()
1

this.InjectStatesAndActivityTypes(model);

return View("Index", model);

Visual Studio 2008 Attributes may not have been in common use in Visual Studio 2008, however
ASP.NET MVC makes use of them often. Attributes allow for metadata to be defined about the

target they decorate. This allows for the information to be examined at run time (via reflection),
and action taken if deemed necessary.

The Authorize attribute is very handy, because it declares that this method can be invoked
only for http requests that are already authenticated. If the request is not authenticated, it will
redirect to the ASP.NET Forms Authentication configured login target, which we just finished
setting up. The AcceptVerbs attribute also restricts how this method can be invoked, by
specifying which Http verbs can be used. In this case, we are restricting this method to HTTP
GET verb requests. We've added a string parameter, returnUrl, to the method signature so
that when the user is finished viewing or updating her information, she can be returned to
what she was looking at previously.

Note This highlights a part of the ASP.NET MVC framework called Model Binding, details of which
are out of scope for this book. However, you should know that it attempts to find a source for
returnUrl (a form field, routing table data, or query string parameter with the same name) and
binds it to this value when invoking the method. If the Model Binder cannot find a suitable source,
the value will be null. This can cause problems for value types that cannot be null, because it will
throw an InvalidOperationException.

The main portion of this method is fairly straightforward: it takes the return of the
GetCurrentProfile method on the ASP.NET Membership Service interface and sets up a view
model object for the view to use. The call to GetReturnUrl is an example of an extension
method defined in the PlanMyNight.Infrastructure project. It's not a member of the Controller
class, but in the development environment it makes for much more readable code.

InjectStatesAndActivityTypes is a method we do need to implement. It gathers data from the
reference respository for names of stats and the activity repository. It makes two collections of

SelectListltem (an HTML class for MVC): one for the list of States, and the other for the list of
different activity types available in the application. It also sets the respective value.

private void InjectStatesAndActivityTypes(ProfileViewModel model)
{
var profile = model.Profile;
var types = this.activitiesRepository.RetrieveActivityTypes().Select(
o => new SelectListItem {
Text = o.Name,
Value = 0.Id.ToStringQ),
Selected = (profile != null && o0.Id ==
profile.PreferredActivityTypeld)
}).ToList(Q);

types.Insert(0, new SelectListItem { Text = "Select...", Value = "0" });
var states = this.referenceRepository.RetrieveStates().Select(
o => new SelectListItem {
Text = o.Name,
Value = o.Abbreviation,
Selected = (profile != null && o.Abbreviation ==
profile.State)
}).ToList(Q);

states.Insert(0, new SelectListItem {
Text = "Any state",
Value = string.Empty
s

model.PreferredActivityTypes = types;
model.States = states;

}

Updating the Profile Data

Having completed the infrastructure needed to retrieve data for the current profile, we can
move on to updating the data in the model from a form submission by the user. After this we
can create our View pages and see how all this ties together. The Update method is simple;
however, it does introduce some new features not seen yet.

[Authorize()]
[AcceptVerbs(HttpVerbs.Post)]
[ValidateAntiForgeryToken()]
public ActionResult Update(UserProfile profile)
{
var returnUrl = Request.Form["returnUr1"];
if (!ModelState.IsValid)
{
// validation error
return this.IsAjaxCall() ? new JsonResult { JsonRequestBehavior =
JsonRequestBehavior.AllowGet, Data = ModelState }
: this.Index(returnurl);

this.membershipService.UpdateProfile(profile);
if (this.IsAjaxCall1(Q))

{
return new JsonResult { JsonRequestBehavior = JsonRequestBehavior.AlTlowGet,
Data = new { Update = true, Profile = profile, ReturnUrl = returnUrl } };
}
else
{
return RedirectToAction("UpdateSuccess", "Account", new { returnUrl =
returnUrl });
}

}

The ValidateAntiForgeryToken attribute ensures that the form has not been tampered with. To
utilize this feature, we will need to add an AntiForgeryToken to our View's input form. The
check on the ModelState to see if it is valid is our first look at input validation. This is a look at
the server-side validation, and ASP.NET MVC offers a very easy-to-use feature to make sure
that incoming data meets some rules. The UserProfile object that is created for input to this
method, via MVC Model Binding, has had one of its properties decorated with a
System.ComponentModel.DataAnnotations.Required attribute. During Model Binding, the
MVC framework will evaluate DataAnnotation attributes and mark the ModelState as valid
only when all of the rules pass.

In the case where the ModelState is not valid, the user is redirected to the Index method
where the ModelState will be used in the display of the input form. Or, if the request was an
AJAX call, a JsonResult is returned with the ModelState data attached to it.

Visual Studio 2008 Because in ASP.NET MVC requests are routed through controllers rather than
pages, the same URL can handle a number of different requests and respond with the appropriate
view. In Visual Studio 2008, a developer would have to create two different URLs and call a
method in a third class to perform the functionality.

When the ModelState is valid, the profile is updated in the membership service and a JSON
result is returned for AJAX requests with the success data, or in the case of “"normal” requests,
the user is redirected to the UpdateSuccess action on the Account controller. The
UpdateSuccess method is the final method we need to implement to finish off this controller:

public ActionResult UpdateSuccess(string returnUrl)

{
var model = new ProfileViewModel
{
Profile = this.membershipService.GetCurrentProfile(),
ReturnUrl = returnuUrl
};

return View(model);

The method will be used to return a success view to the browser, display some of the updated
data, and provide a link to return the user to where she was when she started the profile
update process.

Now that we've reached the end of the Account controller implementation, you should have a
class that resembles this listing:

namespace Microsoft.Samples.PlanMyNight.Web.Controllers
{
using System;
using System.Collections.Specialized;
using System.IO;
using System.Linqg;
using System.Web;
using System.Web.Mvc;
using Microsoft.Samples.PlanMyNight.Data;
using Microsoft.Samples.PlanMyNight.Entities;
using Microsoft.Samples.PlanMyNight.Infrastructure;
using Microsoft.Samples.PlanMyNight.Infrastructure.Mvc;
using Microsoft.Samples.PlanMyNight.Web.ViewModels;
using WindowsLiveId;

[HandleErrorWithContentType()]

[OutputCache(NoStore = true, Duration = 0, VaryByParam = "*")]
public class AccountController : Controller
{

private readonly IWindowsLivelogin windowsLogin;

private readonly IMembershipService membershipService;
private readonly IFormsAuthentication formsAuthentication;
private readonly IReferenceRepository referenceRepository;
private readonly IActivitiesRepository activitiesRepository;

public AccountController()
this(
new ServiceFactory().GetMembershipService(),
new WindowsLivelLogin(true),
new FormsAuthenticationService(),
new ServiceFactory().GetReferenceRepositoryInstance(),
new ServiceFactory().GetActivitiesRepositoryInstance())

public AccountController(IMembershipService membershipService,
IWindowsLiveLogin windowsLogin,
IFormsAuthentication formsAuthentication,
IReferenceRepository referenceRepository,
IActivitiesRepository activitiesRepository)

this.membershipService = membershipService;
this.windowsLogin = windowsLogin;
this.formsAuthentication = formsAuthentication;
this.referenceRepository = referenceRepository;
this.activitiesRepository = activitiesRepository;

public ActionResult LiveId()
{
string action = Request.QueryString["action"];
switch (action)
{
case "logout":
this.formsAuthentication.SignOut(Q);
return Redirect("~/");
case "clearcookie":
this.formsAuthentication.SignOut(Q);
string type;
byte[] content;
this.windowsLogin.GetClearCookieResponse(out type, out content);
return new FileStreamResult(new MemoryStream(content), type);

default:

// login

NameValueCollection tokenContext;

if ((Request.HttpMethod ?? "GET™).ToUpperInvariant() == "POST")

{
tokenContext = Request.Form;

}

else

{
tokenContext = new NameValueCollection(Request.QueryString);
tokenContext["stoken"] =
System.Web.HttpUtiTlity.Ur1Encode(tokenContext["stoken"]);

}

var liveIldUser = this.windowsLogin.ProcessLogin(tokenContext);
if (liveIdUser != null)
{
var returnUrl = liveIdUser.Context;
var userId = new Guid(liveIdUser.Id).ToString(Q);
if (!'this.membershipService.ValidateUser(userId, userId))
{
this.formsAuthentication.SignIn(userId, false);
this.membershipService.CreateUser(
userId, userId, string.Empty);
var profile =
this.membershipService.CreateProfile(userId);
profile.FullName = "New User";
profile.State = string.Empty;
profile.City = string.Empty;
profile.PreferredActivityTypeld = 0;
this.membershipService.UpdateProfile(profile);
if (string.IsNullOrEmpty(returnUrl)) returnUrl = null;
return RedirectToAction("Index", new { returnUrl =
returnUrl });
}
else
{
this.formsAuthentication.SignIn(CuserId, false);
if (string.IsNullOrEmpty(returnUrl)) returnUrl = "~/";

return Redirect(returnUrl);

}
}
break;
}
return Redirect("~/");
}
public ActionResult Login(string returnUrl)
{
var redirect = HttpContext.Request.Browser.IsMobileDevice ?
this.windowsLogin.GetMobileLoginUrl(returnUrl)
this.windowsLogin.GetLoginUr1(returnUrl);
return Redirect(redirect);
}
[Authorize()]

[AcceptVerbs (HttpVerbs.Get)]
public ActionResult Index(string returnUrl)

{
var profile = this.membershipService.GetCurrentProfile();
var model = new ProfileViewModel
{
Profile = profile,
ReturnUrl = returnUrl ?? this.GetReturnUr1()
};
this.InjectStatesAndActivityTypes(model);
return View("Index", model);
}
[Authorize()]

[AcceptVerbs (HttpVerbs.Post)]
[ValidateAntiForgeryToken()]
public ActionResult Update(UserProfile profile)
{
var returnUrl = Request.Form["returnUr1"];
if (!ModelState.IsValid)

{
// validation error
return this.IsAjaxCall() ?
new JsonResult { JsonRequestBehavior =
JsonRequestBehavior.AllowGet, Data = ModelState }
: this.Index(returnUrl);
}

this.membershipService.UpdateProfile(profile);

if (this.IsAjaxCal1(Q))

{

return new JsonResult {

JsonRequestBehavior = JsonRequestBehavior.AllowGet,
Data = new {
Update = true,
Profile = profile,
ReturnUr1l = returnUrl } };

else
{
return RedirectToAction("UpdateSuccess",
"Account", new { returnUrl = returnUrl });

}
pubTlic ActionResult UpdateSuccess(string returnUrl)
{
var model = new ProfileViewModel
{
Profile = this.membershipService.GetCurrentProfile(),
ReturnUrl = returnUrl
iF

return View(model);

private void InjectStatesAndActivityTypes(ProfileViewModel model)
{
var profile = model.Profile;
var types = this.activitiesRepository.RetrieveActivityTypes()
.Select(o => new SelectListItem { Text = o.Name,
Value = 0.Id.ToStringQ),
Selected = (profile != null &&
0.Id == profile.PreferredActivityTypeld) })
.ToList(Q);
types.Insert(0, new SelectListItem { Text = "Select...", Value = "0" });
var states = this.referenceRepository.RetrieveStates().Select(
o => new SelectListItem {
Text = o.Name,
Value = o.Abbreviation,
Selected = (profile != null &&
o.Abbreviation == profile.State) })
.ToList(Q);
states.Insert(0,
new SelectListItem { Text = "Any state",
Value = string.Empty });
model.PreferredActivityTypes = types;
model.States = states;

Creating the Account View

In the previous section, we created a controller with functionality that allows a user to update
his or her information and view it. In this section we're going to walk through the Visual
Studio 2010 features that enable us to create the Views that display this functionality to the
user.

To create the Index view for the Account controller:

1. Navigate to the Views folder in the PlanMyNight.web project.

2. Click the right mouse button on the Views folder, expand the Add submenu, and select New
Folder.

3. Name the new folder Account.

4. Click the right mouse button on the new Account folder, expand the Add submenu, and select
View.

5. Fill out the Add View dialog box as shown here:

6. Click OK, and now you should be looking at an HTML page with some <asp:Content> controls
in the markup:

You might notice that it doesn't look much different from what you are used to in Visual
Studio 2008. By default, ASP.NET MVC 2 uses the ASP.NET Web Forms view engine, so there
will be some commonality between MVC and Web Forms pages. The primary differences at
this point are that the page class derives from System.Web.Mvc.ViewPage< ProfileViewModel >
and there is no code behind file. MVC does not utilize code-behind files, like ASP.NET Web
Forms does, to enforce a strict separation of concerns. MVC pages are generally edited in
markup view; the designer view is primarily for ASP.NET Web Forms applications.

In order for this page skeleton to become the main view for the Account controller, we should
change the title content to be more in line with the other views:

<asp:Content ID="Contentl" ContentPlaceHolderID="TitleContent" runat="server">
Plan My Night - Profile
</asp:Content>

Next we need to add the client scripts we are going to use in the content placeholder for the
HtmlHeadContent:

<asp:Content ID="Content3" ContentPlaceHolderID="HtmlHeadContent" runat="server">
<% Ajax.RegisterClientScriptInclude(
Url.Content("~/Content/Scripts/jquery-1.3.2.min.js"),
"http://ajax.Microsoft.com/ajax/jQuery/jquery-1.3.2.min.js"); %>
<% Ajax.RegisterClientScriptInclude(
Url.Content("~/Content/Scripts/jquery.validate.js"),
"http://ajax.microsoft.com/ajax/jquery.validate/1.5.5/jquery.validate.min.js"); %>
<% Ajax.RegisterCombinedScriptInclude(
Url.Content("~/Content/Scripts/MicrosoftMvclQueryValidation.js"), "pmn"); %>
<% Ajax.RegisterCombinedScriptInclude(
Url.Content("~/Content/Scripts/ajax.common.js"), "pmn"); %>
<% Ajax.RegisterCombinedScriptInclude(
Url.Content("~/Content/Scripts/ajax.profile.js"), "pmn"); %>

<%= Ajax.RenderClientScripts() %>
</asp:Content>

This script makes use of extension methods for the System.Web.Mvc.AjaxHelper, which are
found in the PlanMyNight.Infrastructure project, under the MVC folder.

With the head content setup, we can look at main content of the view:

<asp:Content ContentPlaceHolderID="MainContent" runat="server">
<div class="panel" id="profileForm">
<div class="1innerPanel">
<h2>My Profile</h2>
<% Html.EnabTeClientValidation(); %>
<% using (Html.BeginForm("Update", "Account")) %>
<% { %>
<%=Htm1.AntiForgeryToken()%>
<div class="1items">
<fieldset>
<p>
<Tlabel for="FullName">Name:</label>
<%=Htm1.EditorFor(m => m.Profile.FullName)%>
<%=Htm1.ValidationMessage("Profile.FulIName",
new { @class = "field-validation-error-wrapper" })%>
</p>
<p>
<label for="State">State:</label>
<%=Htm1.DropDownListFor(m => m.Profile.State, Model.States)%>
</p>
<p>
<label for="City">City:</label>
<%=Htm1.EditorFor(m => m.Profile.City, Model.Profile.City)%>
</p>
<p>
<label for="PreferredActivityTypeld">Preferred activity:</Tabel>
<%=Htm1.DropDownListFor(m =>
m.Profile.PreferredActivityTypeld,
Model.PreferredActivityTypes)%>
</p>
</fieldset>
<div class="submit">
<%=Htm1 .Hidden("returnUrl", Model.ReturnUrl1)%>
<%=Htm1.SubmitButton("submit", "Update")%>
</div>
</div>
<div class="toolbox"></div>
<% } %>
</div>
</div>
</asp:Content>

Aside from some inline code, this looks to be fairly normal HTML markup. We're going to
focus our attention on the inline code pieces to demonstrate the power they bring (as well as
the simplicity).

Visual Studio 2008 In Visual Studio 2008, it was more common place to use server side controls
to display data, and other display time logic. However since ASP.NET MVC view pages do not have
a code behind file, it must be done in the same file with the markup. ASP.NET Web Forms controls
can still be used, our example makes use of the <asp:Content> control, however their functionality
is generally limited because there is no code behind file.

MVC makes a lot of use of what is known as HTML helpers. The methods contained under
System.Web.Mvc.HtmIHelper emit small, standards-compliant HTML tags for various uses. This
requires the MVC developer to type more markup than a Web Forms developer in some
cases, but they have more direct control over the output. The strongly typed version of this
extension class (HtmlHelper<TModel>), can be referenced in the view markup via the
ViewPage<TModel >.Html property.

These are the HTML methods used in this form, which are only a fraction of what is available
by default:

Html.EnableClientValidation() enables data validation to be performed on the client side
based on the strongly typed ModelState dictionary.

Html.BeginForm places a <form> tag in the markup and closes the form at the end of the
using section. It takes various parameters for options, but the most common is the name
of the Action and the controller to invoke that action on. This allows the MVC Framework
to generic the specific url to target the form to at run time, versus having to input a string
url into the markup.

Html.AntiForgeryToken places a hidden field in the form with a check value that is also
stored on the server side and validated when the target of the form has the
ValidateAntiForgeryToken attribute. Remember that we added this attribute to the Update
method in the controller.

Html.EditorFor is an overloaded method that inserts a text box into the markup. This is
the strongly typed version of the Html.Editor method.

Html.DropDownlListFor is an overloaded method that places a drop-down list into the
markup. This is the strongly typed version of the Html.DropDownList method.

Html.ValidationMessage is a helper that will display a validation error message when a
given key is present in the ModelState dictionary.

Html.Hidden places a hidden field in the form, with the name and value that is passed in.

Html.Submit creates a Submit button for the form.

Note With the Index view markup complete, we only need to add the view for the UpdateSucess
action before we can see our results.

To Create the UpdateSuccess view:

Expand the PlanMyNight.Web project in the Solution explorer, and then expand the Views
folder.

Click the right mouse button on the Account folder.
Open the Add submenu, and click View.

Fill out the View creation dialog box so that it looks like this:

Once the view page is created, fill in the title content so that it looks like this:

<asp:Content ContentPlaceHolderID="TitleContent" runat="server">Plan My Night - Profile
Updated</asp:Content>

And the placeholder for MainContent should look like this:

<asp:Content ContentPlaceHolderID="MainContent" runat="server">
<div class="panel" id="profileForm">
<div class="innerPanel">
<h2>My Profile</h2>
<div class="1items">
<p>You profile has been successfully updated.</p>
<h3>» <a href="<%=Html.AttributeEncode(Model.ReturnUrl 7?7
Url.Content("~/"))%>">Continue</h3>
</div>
<div class="toolbox"></div>
</div>

</div>
</asp:Content>

With this last view created, we can now compile and launch the application. Click the Sign In
button, as seen in the top right corner of Figure 9-6, and sign in to Windows Live ID.

Figure 9-6 Plan My Night default screen.

Once you've signed in, you should be redirected to the Index view of the Account controller
we created, shown in Figure 9-7.

Figure 9-7 Profile settings screen returned from the /ndex method of the Account controller.

If instead it returned you to the search page, just click the My Profile link, located in the links
at the center and top of the interface. To see the new data validation features at work, try to
save the form without filling in the Full Name field. You should get a result that looks like
Figure 9-8.

My Profile

State: Washington E
City: Redmond
Preferred activity: |Restaurant[~]
Update

Figure 9-8 Example of failed validation during Model Binding checks.

Because we enabled client-side validation, there was no post back. To see the server-side
validation work, we would have to edit the Index.aspx file in the Account folder and comment
out the call to Html.EnableClientValidation. The tight integration and support of AJAX and
other JavaScript in MVC applications allows for server-side operations like validation to be
moved to the client side much more easily than they were previously.

Visual Studio 2008 In ASP.NET MVC applications, the value of the ID attribute for a particular
HTML element are not transformed, like they are in ASP.NET Web Forms 3.5. In Visual Studio 2008,
a developer would have to make sure to set the UniquelD of a control/element into a JavaScript
variable so that it could be accessed by external JavaScript. This was done to make sure the ID was
unique. However, it was always an extra layer of complexity to the interaction between ASP.NET
3.5 Web Forms controls and JavaScript. In MVC this transformation does not happen, but it is up
to the developers to ensure uniqueness of the ID. It should also be noted that ASP.NET 4.0 Web
Forms now supports disabling the ID transformation on a per-control basis, if the developer so
wishes.

With the completed Account controller and related views, we have filled in the missing “core”
functionality of Plan My Night, while taking a brief tour of some of the new features in Visual
Studio 2010 and MVC 2.0 applications. But MVC is not the only choice for Web developers.
ASP.NET Web Forms has been the primary application type for ASP.NET since it was released,
and it continues to be improved ipon in Visual Studio 2010. In the next section we'll explore
creating an ASP.NET Web form with the Visual Designer to be used in the MVC application.

Using the Designer View to Create a Web Form

Applications will encounter an unexpected condition at some point in their lifetime of use.
The companion application is no different, and when it does encounter an unexpected
condition, it returns an error screen like that shown in Figure 9-9.

Figure 9-9 Example of an error screen in the Plan My Night Application.

Currently, when a user sees this screen, they really have only the option of trying their action
again or using the navigation links along the top area of the application. (Of course, that
might also cause another error.) Adding an option for the user to provide feedback would
allow the developers to gain information about the situation that might not be apparent by
the standard exception message and stack trace. To show a different way to create a user
interface component for Plan My Night, the error feedback page is going to be created as an
ASP.NET Web Form using primarily the Designer view in Visual Studio. Before we can begin
designing the form, we need to create a base form file to work from.

To create a new Web form:

Open the context menu on the PlanMyNight.Web project (via clicking the right mouse
button), open the Add submenu, and select New Item.

In the Add New Item dialog box, select Web Form Using Master Page and call the item
ErrorFeedback.aspx in the Name field.

3. The dialog screen to associate a master page with this Web form will appear. On the Project
Folders side, ensure that the main PlanMyNight.web folder is selected and then select the
WebForms.Master item on the right.

4. The resulting page may be shown in source mode (or Design) instead of Split. Switch the view
to Split (bottom of the window, just like in previous Visual Studio versions). At the end the
screen should look similar to this:

Note Split view is recommended so that we can see the source the designer is generating and to
add extra markup as needed.

It's a good idea to pin the control Toolbox open on the screen because we will be dragging
controls and elements to the content area during this section. The Toolboy, if not present
already, can be found under the View menu.

Start by dragging a div element (under the HTML group) from the tool box into the
MainContent section of the designer. A div tab will appear, indicating that the new element
we added is the currently selected element. Open the context menu for the div, and choose
Properties (which can also be opened with the F4 key). With the Properties window open, edit
the (Id) property to have a value of profileForm. (Casing is important.) Also, change the Class
property to have a value of panel. After editing the values, the size of our content area will
have changed, because css is applied in the designer view.

Drag another div inside in the first, and set its class property to innerPanel. In the markup
panel add the following markup to the innerPanel:

<h2>Error Feedback</h2>

After the close of the <h2> tag, add a new line and open the context menu. Choose Insert
Snippet, and follow the click path of ASP.NET > formr. This will create a server-side form tag
for us to insert Web controls into. Inside the form, place a div with class of items and a fieldset
tag.

Next drag a TextBox control (found under Standard) from the Toolbox and drop it inside the
fieldset tag. Set the ID of the text box to FullName. Add a <label> tag before this control in
the markup view, set its for property to the ID of the textbox and its value to Full Name: (note

the colon). Surround these two elements with a <p>, and you should have something like
Figure 9-10 in the design view.

Figure 9-10 Current state of ErrorFeedback.aspx in the designer view.

Add another text box and label in a similar manner as the first, but set the ID of the text box
to EmailAddress and the label value to Email Address:. Repeat the process a third time, setting
the TextBox ID and label value to Comments. There should now be three labels and three
single line TextBox controls in the Design view. The Comments control needs multiline input,
so open its property page and set TextMode to Multiline, Rows to 5, and Columns to 40. This
should create a much wider text box in which the user can enter comments

Use the Insert Snippet feature again, after the Comments Text box, and insert a “div with
class” tag (HTML>divc). Set the class of the div tag to submit, and drag a Button control from
the toolbox into this div. Set the Button's Text property to Send Feedback.

The designer should show something similar to what is in Figure 9-11, and at this point we
have a page that will submit a form.

Figure 9-11 ErrorFeedback.aspx form with complete field set.

However, it does not perform any validation on the data being submitted. To do this, we are
going to take advantage of some of the Validation controls present in ASP.NET. We are going
to make the Full Name and Comments boxes required fields and perform a regex validation
of the email address to ensure that it matches the right pattern.

Under the Validation group of the toolbox, there are some premade validation controls we
will use. Drag a RequiredFieldValidator object from the toolbox and drop it to the right of the
Full Name text box. Open the properties for the validation control and set the
ControltoValidate property to FullName. (It's a drop-down list of controls on the page.) Also,
set the CssClass to errorShort. This will change the display of the error to a red triangle used
elsewhere in the application. Finally, change the Error Message to say “Name is required”.

Repeat these steps for the Comments box, but substitute the language and property values as
appropriate.

For the email address field, we want to make sure the user types in a valid email address, so
for this field drag a RegularExpressionValidator control from the toolbox and drop it next to
the Email Address text box. The property values are similar for this control in that we set the
ControlToValidate property to EmailAddress and the CssClass property to errorShort, but with
this control we define the regular expression to be applied to the input data. This is done with
the ValidationExpression property, and it should be set like this:

[A-Za-z0-9._%+-]1+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}

The error message for this validator should say something like “Must enter a valid email
address”.

Finally, we need a place to display the error messages encountered during validation of the
form. The ValidationSummary control takes care of this automatically once it is placed in the
form. Drag one from the Toolbox, and drop it at the beginning of the form.

The form is complete. To see it in the application, we need to add the option of providing
feedback to a user when they encounter an error. In the solution explorer, navigate the
PlanMyNight.web project tree into the Views folder and then into the Shared subfolder. Open
the Error.aspx file in the markup viewer, and go to line 35. This is the line of the error screen
where we ask the user if they want to try their action again and where we will put the option
for sending the feedback. After the question text in the same paragraph, add the following
markup:

or send feedback?

This will add an option to go to the form we just created whenever there is a general error in
the MVC application. To see our form, we are going to have to cause an error in our
application.

To cause an error in the Plan My Night application:

Start the application.

Once the default search page is up, type the following into the browser address bar:
http://www.planmynight.net:48580/Itineraries/Details/38923828

Since it is highly unlikely such an itinerary id exists in the database, an error screen will be
shown.

http://www.planmynight.net:48580/Itineraries/Details/38923828

ight SEARCH | ABOUT

Ooops! An error has occurred while processing your request
! \ Don't worry, this was our fault, not yours.
r

Want to try again or send feedback?

Error Details

System.ArgumentNullException: Value cannot be null. Parameter name: value at System.Web.Caching.CacheEntry..ctor(String
key, Object value, CacheDependency dependency, CacheltemRemovedCallback onRemovedHandler, DateTime
utcAbsaluteExpiration, TimeSpan slidingExpiration, CacheltemPriority priority, Boolean isPublic) at
System.Web.Caching.Cachelnternal.Dolnsert(Boolean isPublic, String key, Object value, CacheDependency dependencies,
DateTime utcAbsoluteExpiration, TimeSpan slidingExpiration, CacheltemPriority priority, CacheltemRemovedCallback
onRemoveCallback, Boolean replace) at System.Web.Caching.Cache.Insert(String key, Object value, CacheDependency
dependencies, DateTime absoluteExpiration, TimeSpan slidingExpiration) at o
Microsoft.Samples.PlanMyNight.Web.Infrastructure.AspNetCachingProvider.Add(String container, String key, Object value,

TimeSpan timeout) in C:\code\PMN\code - End of Chapter\PIanMyNight.Web\Infraslru(ture\AspNetCa(hingProvider.(s:Iine 33 at
Microsoft.Samples.PlanMyNight.Data.Caching.CachedItinerariesRepository.Retrieve(Int64 itineraryld) in C:\code\PMMN\code - End

of Chapter\PIanMyNight.Eata\Caching\CachedltinerariesRepositor}(.cs:line 70 at
Microsoft.Samples.PlanMyNight.Web.Controllers.ItinerariesController.Details(Int64 id) in C:\code\PMN\code - End of
Chapter\PlanMyNight.Web\Controllers\ItinerariesController.cs:line 71 at lambda_method(Closure , ControllerBase , Object[]) at
System.Web.Mvc.ActionMethodDispatcher.Execute(ControllerBase controller, Object[] parameters) at
System.Web.Mvc.ReflectedActionDescriptor.Execute(ControllerContext controllerContext, IDictionary'2 parameters) at
System.Web.Mvc.ControllerActionInvoker.InvokeActionMethod(ControllerContext controllerContext, ActionDescriptor
actionDescriptor, IDictionary™2 parameters) at

System.Web.Mvc.ControllerActionInvoker.< »c_ DisplayClassd. < InvokeActionMethodWithFilters>b__a() at
5‘vstem.Web.Mvc.ControIIerA(tionlnvokerlnvokeA(tianMethchilterﬂAdicnFiIter filter, ActionExecutingContext preContext, ‘ -
< in v

4. With the error screen visible, click the link to go to our feedback form. Try to submit the form
with invalid data.

ASP.NET uses client-side script (when the browser supports it) to perform the validation, so no
post backs are occurring until the data passes. On the server side, once it does receive a post
back, a developer can check the validation state with the Page./sValid property in the code
behind. However, because we used client-side validation (on by default), this will always be
true. The only code in the code behind that needs to be added would be to redirect the user
on a post back (and checking the Page./sValid property, in case client validation missed
something).

protected void Page_Load(object sender, EventArgs e)

{
if (this.IsPostBack && this.IsValid)
{
this.Response.Redirect("/", true);
}
}

This really isn‘'t very useful to the user, but our goal in this section was to work with the
designer to create an ASP.NET Web form. This added a new interface to the

PlanMyNight.Web project, but what if we wanted to add new functionality to the application
in a more modular sense, some degree of functionality that could be added or removed
without having to compile the main application project. This is where an extensibility
framework like the Managed Extensibility Framework (MEF) can show the benefits it brings.

Extending the Application with MEF

A new technology available in Visual Studio 2010 as part of the .NET Framework 4 is the
Managed ExtensibilityFramework. The Managed Extensibility Framework provides developers
with a simple (yet powerful) mechanism to allow their applications to be extended by 3™
parties after the application has been shipped. Even within the same application, MEF allows
developers to create applications, which completely isolate components, allowing them to be
managed or changed independently.. It utilizes a resolution container to map components
that provide a particular function (Exporters) and components that require that functionality
(importers), without the two concrete components having to know about each other directly.
Resolutions are done on a contract basis only, which easily allows components to be
interchange, or introduced to an application with very little overhead.

Note MEF's community website, containing in-depth details about the architecture, can be
found at http://mef.codeplex.com.

The companion Plan My Night application has been designed with extendibility in mind, and
it has three "add-in” module projects in the solution, under the Addins solution folder.

PlanMyNight.Addins.Emailltinerary adds the ability to email itinerary lists to anyone the user
sees fit. PlanMyNight.Addins.Printltinerary provides a printer-friendly view of the itinerary.
Lastly, PlanMyNight.Addins.Share adds in social media sharing functions (so that the user can

http://mef.codeplex.com/

post a link to an itinerary) as well as url-shortening operations. None of these projects
reference the main PlanMyNight.Web application or are referenced by it. They do have
references to the PlanMyNight.Contracts and PlanMyNight.Infrastructure projects, so they can
export (and import in some cases) the correct contracts via MEF as well as utilize any of the
custom extensions in the infrastructure project.

Note Before doing the next step, if the Web application is not already running, launch the
PlanMyNight.web project so that the Ul is visible to you.

To add the modules to our running application, run the DeployAllAddins.bat file, found in the
same folder as the PlanMyNight.sIn file. This will create new folders under the Areas section of
the PlanMyNight.Web project. These new folders, one for each plug-in, will contain the files
needed to add their functionality to the main web application. The plug-ins appear in the
application as extra options under the current itinerary section of the search results page and
on the itinerary details page. Once the batch file is finished running, go to the interface for
PlanMyNight, search for an activity, and add it to the current itinerary. You should notice
some extra options under the itinerary panel other than just New and Save.

The social sharing options will show in the interface only after the itinerary is saved and
marked public.

Visual Studio 2008 Visual Studio 2008 does not have anything that compares to MEF. In order
to support “plug-ins,” a developer would have to either write the plug-in framework from scratch
or purchase a commercial package. Either of two options led to proprietary solutions in which an

external developer would have to understand in order to create a component for them. Adding
MEF to the .NET Framework, it helps to cut down the entry barriers to producing extendable
applications and the “plug-in” modules for them.

Print Itinerary Addin Explained

To demonstrate how these plug-ins wire into the application, let’s have a look at the
Printintinerary.Addin project. When you expand the project you should see something like the
following structure:

Some of this structure is similar to the PlanMyNight.Web project (Controllers and Views), and
that's because this add-in is going to be placed in an MVC application as an Area. If we have a
closer look at PrintltineraryController.cs file in the Controller folder, we can see that it is
extremely similar in structure to the controller we created earlier in this chapter (and any of
the other controllers in the Web application). However, some key differences set it apart from
the controllers that are compiled in the primary PlanMyNight .web application.

Focusing on the class definition, we will notice some extra attributes:

[Export("PrintItinerary", typeof(IController))]
[PartCreationPolicy(CreationPolicy.NonShared)]

These two attributes describe this type to the MEF resolution container. The first attribute,
Export, marks this class as providing an IController under the contract name of Printltinerary.
The second attribute declares that this object only supports nonshared creation and cannot
be created as a shared/singleton object. Defining these two attributes are all you need to do
to have the type used by MEF. In fact, PartCreationPolicy is an optional attribute, but it should
be defined if the type cannothandle all the creation policy kinds.

Further into the PrintltineraryController.cs file, the constructor is decorated with an
ImportingConstructor attribute:

[ImportingConstructor]
public PrintItineraryController(IServiceFactory serviceFactory) :

this(
serviceFactory.GetItineraryContainerInstance(),
serviceFactory.GetItinerariesRepositoryInstance(),
serviceFactory.GetActivitiesRepositoryInstance())
{
}

The ImportingConstructor attribute informs MEF to provide the parameters when creating this
object, . In this particular case, MEF will provide an instance of IServiceFactory for this object
to use. Where the instance comes from is of no concern to the this class and really assists with
creating modular applications. For our purposes, the /ServiceFactory contracted is being
exported by the ServiceFactory.cs file in the PlanMyNight.web project.

The RouteTableConfiguration.cs file registers the url route information that should be directed
to the PrintltineraryController. This route, and the routes of the other add-ins, are registered
into the application during the Application_Start method in the Global.asax.cs file of
PlanMyNight.Web:

// MEF Controller factory
var controllerFactory = new MefControllerFactory(container);
ControllerBuilder.Current.SetControllerFactory(controllerFactory);

// Register routes from Addins
foreach (RouteCollection routes in container.GetExportedValues<RouteColTlection>())

{

foreach (var route 1in routes)
{
RouteTable.Routes.Add(route);
}
}

The controllerFactory, which was initialized with a MEF container containing path information
to the Areas subfolder (so that it enumerated all the plug-ins), is assigned to be the controller
factory for the lifetime of the application. This will allow controllers imported via MEF to be
usable anywhere in the application. The routes these plug-ins repond to are then retrieved
from the MEF container and registered into the MVC routing table.

The ItineraryContextual ActionsExport.cs file exports information to create the link to this plug-
in, as well as metadata for displaying it. This information is used in the
ViewModelExtensions.cs, in the PlanMyNight.web project, when building a view model for
display to the user:

// get addin 1links and toolboxes

var addinBoxes = new List<RouteValueDictionary>(Q);
var addinLinks = new List<ExtensionLink>(Q);

addinBoxes.AddRange (AddinExtensions.GetActionsFor("ItineraryToolbox", model.Id == 0 ? null :
new { id = model.Id }));

addinLinks.AddRange(AddinExtensions.GetLinksFor("ItineraryLinks", model.Id == 0 ? null : new
{ id = model.Id }));

The call to AddinExtentions.GetLinksFor will enumerate over exports in the MEF Export
provider and return a collection of them to be added to the local addinLinks collection. These
are then used in the View to display more options when they are present.

Summary

In this chapter we've explored a few of the many new features and technologies found in
Visual Studio 2010 that were used to create the companion Plan My Night application. We've
walked through creating a controller and its associated view and how the ASP.NET MVC
framework offers Web developers a very powerful option for creating Web applications.
We've also explored how using the Managed Extensibility Framework in application design
can allow plug-in modules to be developed external to the application and loaded at run
time. In the next chapter we will explore how debugging applications has been improved in
Visual Studio 2010.

Chapter 10

From 2008 to 2010: Debugging an
Application

After reading this chapter, you will be able to
e Use the new debugger features coming with Visual Studio 2010

e How to create unit tests and execute them in Visual Studio 2010

e All along this chapter you will be able to compare what was available or different for you
as a developer in Visual Studio 2008

As we have been writing this book we have realized how much the debugging tools and
developer aids have evolved over the last three versions of Visual Studio. Focusing on
debugging an application and writing unit tests just reinforce the chance we have to be able
to work with Visual Studio 2010.

Visual Studio 2010 Debugging Features

In this chapter you will go through the different debugging features using a modified Plan My
Night application. If you installed the companion content at the default location you will find
the modified Plan My Night application at the following location:
%userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter
10\DebuggerStart\Code and double-click the PlanMyNight.sin file.

First of all before diving into the debugging session itself you will need to setup a few things.

1. In Solution Explorer, ensure that PlanMyNight.Web is the startup project. If the
project name is not in bold, right click on PlanMyNight.Web and select Set as StartUp
Project.

2. In the PlanMyNight.Web solution open the Global.asax.cs file by clicking the triangle
beside the Global.asax folder and then double-clicking the Global.asax.cs file as
shown in Figure 10-1.

Figure 10-1 Solution Explorer before opening the file Global.asax.cs

Managing Your Debugging Session

Using the Plan My Night application you will examine how a developer can manage and share
breakpoints. And with the use of new breakpoints enhancements you will learn how to inspect
the different data elements in the application in a much faster and efficient way. You will also
look at new minidumps and the addition of a new IL interpreter that allows the evaluation of
managed code properties and functions during minidump debugging.

New Breakpoints Enhancements

Now you should have the Global.ascx.cs file opened in your editor and using the application
you will examine how a developer can manage and share breakpoints. And with the use of
new breakpoints enhancements you will learn how to inspect the different data elements in
the application in a much faster and efficient way.

1. Navigate to the Application_BeginRequest(object sender, EventArgs e) method and set a
breakpoint on the line that reads var url = HttpContext.Current.Request.Url; by clicking
in the left hand margin or by pressing F9. Look at Figure 10-2 to see this in action.

ar url = Httplontext.Current.Request.Url;

= protected void Application_BeginRequest({object sender, EventArgs e)
{
L)
var authority = Httplontext.Current.Request.ServerVariables["HT

Figure 10-2 Creating a breakpoint

2. Press F5 to start the application in debug mode. You should see the developer web
server starting in the system tray and a new browser window opening. The application
should immediately stop at the breakpoint you just created. It is possible that the
Breakpoints window is not visible even after starting the application in debug mode. If
it is the case you can make it visible by going to the Debug menu and selecting
Windows and then Breakpoints or you can use the keyboard shortcut: Ctrl-Alt-B.

3. You should now see the Breakpoints window as shown in Figure 10-3.

Figure 10-3 Breakpoints Window.

4. In the same method add three more breakpoints so that the editor and the Breakpoints
window look like in Figure 10-4.

g protected void Application_BeginRequest(object sender, Eventirgs e)

"] ar url = HttpContext.Current.Request.Url;|
var authority = Httplontext.Current.Request.ServerVariables["HTTP HOST"]
] ar_expectedAuthority = url.Port == 48588 2 “"www.planmynight.net:48580"

var pathAndQuery = url.PathAndQuery;
if (pathandQuery == "/default.aspx”)

pathandQuery = "/";
}

] [if (!authority.Equals(expectedAuthority, StringComparison.OrdinallgnoreC
{
var redirectTo = string.Concat(url.Scheme, "://", expectedfuthority,
] .RedirectPermanent (redirectTo);
}
¥
)
0% ~ 4 m

New- | X | @15 | & @ |43 & Columns~ [Search [| InColumn: [Allvisib

Mame Labels Condition Hit Count
171 {Global.asax.cs, line 100 character 17, (no condition) break always
-[7|@ Global.asax.cs, line 88 character 13 (no condition) break always
-[Z|@ Global.asax.cs, line 90 character13 (no condition) bresk always
-[7@ Globalasax.c, line 97 character 13 (no condition) break always

Figure 10-4 Code editor and Breakpoints window with three new breakpoints.

Visual Studio 2008 As a reader and a professional developer using Visual Studio 2008 every day
| am sure you noticed a series of new buttons as well as new fields in the Breakpoints window. As a

reminder pay attention to Figure 10-5 for a quick comparison of what it looks like in Visual Studio
2008.

Breakpaints
New~ | X DS & | columns -
Name: Condtion Hit Count | Process

[Z]@ BingMapsSe (nocondition) break always
[Z EBingMapsse (nocondition) break always
[Z EBingMapsse (nocondition) break always

Figure 10-5 Visual Studio 2008 Breakpoints window.

6. The first thing | would like you to pay attention to is that the Labels column is now
available for you to help in indexing and in searching breakpoints. It is a really nice and
useful feature that Visual Studio 2010 is bringing to the table. To utilize this feature you
simply have to right-click on a breakpoint and select Edit Labels or the keyboard
shortcut Alt+F9, L. Take a look at Figure 10-6 as a reference.

pawsnuguery = g

¥

X Delete Alt+F9, D
@ & GoToSourceCode Al+F3,S
var red T8 GoTo Disassembly ARFLA oy g
@ Location...
N) Condition...
1 Hit Count...
L Fiter..
100% =~ *
When Hit... —
Breakpoints i Edit labels... Alt=F9, L
New- | X |95 | ‘a 9= @ Erport selected... |
Name t Count
Sort by »

PREI J Global.asax.cs, line 100 chal® o conamony—wreak always
Global.asax.cs, line 88 character 13 (no condition) ~ break always
Global.asax.cs, line 90 character 13 (no condition) break always

-[T1@ Global.asax.cs, line 97 character13 (no condition) ~ break always

Figure 10-6 Edit Labels

7. You should see a window named Edit Breakpoints labels in that window you will add
labels for the selected breakpoint. Add the word ContextRequestUrl in the Type a
new label: text box and click on Add. Repeat this operation on the first breakpoint and
add a label Url. When you are done click on OK You should see a window that looks
like Figure 10-7 while you are entering them and to the right the Breakpoints window
after you are done with those two operations.

Edit breakpoint labels ==
Type 2 new labet:
I Add

Or choose smang existing labels:

ContextRequestUrl
url

Figure 10-7 Adding Labels and seeing them in the Breakpoints Window

Note You can also right-click on the breakpoint in the left hand side margin and select Edit Labels
to accomplish the same tasks as above.

See Also You will see that when adding labels to a new breakpoint you can choose any of the
existing labels that you have already entered. Look at the left figure in Figure 10-7 in the
window labeled Or choose among existing labels:

8. Using any of the ways learned just now and for the purpose of this exercise please add
labels for each of the breakpoints and make sure your Breakpoints window looks like
Figure 10-8 after you're done.

Breakpoints
New= | X | 215 | 4 9@ | & +| Columns ~ | Search:
Name ’ Labels
7@ Global.asax.cs, line 100 character 17 ContextRequestUr, url
- FI@ Global.asa.cs, lined8 character 13 url
we et
[Z/@ Global.asax.cs, line97 character 13 redirectTo,url

Figure 10-8 Breakpoints window with all labels entered

When you have a lot of code and you are in the midst of a debugging session it would
be great to filter the displayed list of breakpoints well that's exactly what the new Search
feature in Visual Studio 2010 allows you to do.

9. To see this in action just enter the word url in the search text box and you will see the
list of breakpoint is filtered down to breakpoints containing url in one of their labels.

In a team environment when you have many developers and testers working together it
is not rare that two people at any given point in time are working on the same bugs. In
Visual Studio 2008 you would have to sit with them, send them a screenshot or line
numbers of where to put breakpoints to refine where they should look at while
debugging that bug.

Important One of the great new addition to breakpoint management In Visual Studio
2010 is that you can now export breakpoints to a file and then send them to a colleague
that can then import them in their environment. Another scenario that this feature is useful
is to share breakpoints between machines. Let's see how to do that.

10. In the Breakpoints window click on the export button to export your breakpoints to a
file and save it on your desktop. Name the file: breakexports.xml

11. Now delete all the breakpoints by clicking either on the Delete all breakpoints

matching the current search criteria button ™ or by selecting all the breakpoints

and clicking the Delete the selected breakpoints button X . The only purpose of
deleting them is to simulate two developers sharing them or one developer sharing
breakpoints between 2 machines.

12. You will now import your breakpoints by clicking on the import button 9 and
loading them from your desktop. Notice that all of your breakpoints with all of their
properties are back and loaded in your environment.

Visual Studio 2008 Starting in Visual Studio 2008 and continuing in Visual Studio 2010 you are
getting great support for JavaScript as well as for jQuery latest iteration. It was already good in
Visual Studio but the integration in Visual Studio 2010 is just faster and you don't have to do
anything to get it.

Inspecting the Data

When you are debugging your applications you know how much time one can spend
stepping into the code and inspecting the content of variables, arguments, etc. Maybe you
can remember when you were learning to write code, a while ago, when a debugger wasn't a
reality or when it was really rudimentary. Do you remember (maybe not — | am old) how many

printf or WriteLn statements you had to write to inspect the content of different data
elements.

Visual Studio 2008 From the days in Visual Studio 2005 as well as in Visual Studio 2008 things
were already a big improvement from your days of writing to the console with all kinds of
statements because we had a real debugger with new functionalities. New data visualizers allowed
you to see XML as a well formed XML snippet and not as a long string. Furthermore with those
data visualizers you were able to view arrays in a more visual way with the list of elements and

their indices and accomplishing that by simply hovering your mouse over the object. Take a look
at Figure 10-9 for an example.

= @ [Micrasoft,Samples.PlantyMight Enthies State[]] | {Dimensions:[S0]
foreach (3tace state in st
{

® @ [0] [{Microsoft. Samples PlanfyNight Entities. State)

= @ [1] |{Microsaft, Samples PlanhyNight Entities, State}

* ® 5 Abbreviation 4 - "AKk® Myhight Entities.State!
© 7 abbreviation 4 - "ak® Myhight Entities State

 F Mame %« "nlaska” Myhlight Entities State}
7 name %« "flaska® Myhight Entities State
V(5] |{riCrusOie senpies, e Myhight Entities, State)

B X ca

®
® @ [7] |{Microsaft, Samples PlanhyNight Entities, State}
® @ [8] |{Microsaft, Samples FlanhiyNight Entities, State}
® @ [9] |{Microsoft, Samples, PlanhyNight Entities, State
@ [10]|{Microsaft, Samples. Planhyight Entities. State}
@ [11]|{Microsaft, Samples FlanniyNight Entities, State}
® @ [12]|{Microsoft, Samples PlantyNight Entities State
® @ [13]|{Microsoft. Samples. PlanhyNight Entities. State
@ [14]|{Microsaft, Samples FlanniyNight Entities State}

Figure 10-9 Collection view in the debugger in Visual Studio 2008

Visual Studio 2008 In Visual Studio 2008 there was some improvements in visualizing new types
of data elements. The nicer and most noticeable improvement was the ability to view the results of
a LINQ statement by using debugger elements like DataTips, the Locals, the Watch or QuickWatch
window. Similarly to any other element but it is so cool that you can do that as well for a LINQ
query you can copy a LINQ variable and paste it into a debugger Window. Remember that to
display the results of a query the debugger must evaluate it... Pay attention to things like side
effects or clear differences in performance specifically as you expand some sub nodes.

Now while those DataTip data visualization techniques are still available in Visual Studio 2010,
a few great enhancements have been added that makes DataTips even more useful. The
DataTip enhancements have been added in conjunction with another new feature of Visual
Studio 2010 namely multi-monitor support. Floating DataTips can be very valuable to you as a
developer and having the ability to put them on a second monitor is a great new feature that
can make your life a lot easier while debugging as it keeps the data that always need to be in
context right there on the second monitor.

1. In the global.ascs.cs file you will insert two breakpoints on line 89 and 91, lines starting
respectively with the source code var authority and var pathAndQuery.

2. You are now going to experiment with the new DataTip features. First of all start the
debugger by pressing F5 and then when the debugger hits the first breakpoint you will
move you mouse over the word url and click on the push pin as seen in Figure 10-10.

= protected void Application BeginRequest(object sender, Eventirgs e)
{
var url = HttpContext.Current.Request.Url;
5] «¢ url {http://localhost:48580/ Default.aspx} = [rverVariables["HTTP_HOST"]
var expectedAuthority = url.Port == 48580 7 "www.planmynight.net:48588" : "planmynight.net”;
[*] ar pathAndQuery = url.PathAndQuery;|

if (pathandQuery == "/default.aspx")

pathandQuery = "/";
}

Figure 10-10 The new DataTip pushpin feature

3. You should now see to the right of the line of code the pinned DataTip (as seen in
Figure 10-11 on the left) and if you hover your mouse over the DataTip you will get the
DataTip management bar. (as seen on Figure 10-11 in the right).

enaer, cventargs e)
x

@ url {hitp://localhost:48580/ Default.aspx) #
Servervariauies| niir_nusi | v

y) . ¥
@ url {http://localhost48580/ Default.aspx} “vea. planmynight .net:48586" & “planmynT{ Unpin from source

.Servervdriauies| e nust |;

Figure 10-11 On the left the pinned DataTip and on the right the DataTip management bar.

See Also You should also see in the breakpoint gutter a blue pushpin indicating that the
DataTip is pinned. The push pin should look like this: =

Note |If you click the double-arrow pointing down in the DataTip management bar you
can insert a comment for this DataTip. You can also remove the DataTip altogether by
clicking on the X button in the DataTip management bar.

4. One nice feature of the new DataTip is that you can insert any expression to be
evaluated right there in your debugging session. For instance if you right-click on the
DataTip name, in this case on url, and select Add Expression and type in authority and
then add another one like as this: (authority != null). You will see that the expressions
are evaluated immediately and will continue to be evaluated for the rest of the
debugging session every time your debugger stops on those breakpoints. At this point
in the debugging session the expression should respectively evaluate to null and false.

5. Now press F10 to execute the line where the debugger stopped and look at the url
DataTip as well as both expressions. They should contain values based on the current s
context. Take a look at Figure 10-12 to see this in action.

E protected void Application_BeginRequest(cbject sender, EventArgs e)
{

ext.Current.Request.Url; @ url {http://localhost:48580/ Default.aspx}

= @ authority a7 "localhost:48580"

var expsctedAuthority = url.Port == 48580 ? "

1= null
ar_pathAndQuery = url.PathAndQuerys @ (authority = nul)|_ true

el@k

if (pathanduery = efault.aspx")

pathandQuery = "/";

Figure 10-12 The url pinned DataTip with the two evaluated expressions.

6. While it is nice to be able to have a mini watch window where it matters right there
where the code is executing you can also see that it is superposed over the source code
being debugged. To that effect you can move the DataTip window anywhere you want
in the code editor by simply dragging it. Take a look at Figure 10-13 for an example.

H

. B @ url {http://localhost:48580/Default.aspx}
g protected void Application BeginRequest(object sender, Eventirgs &) g upor - "localhost8580"
t @ Gauthority 1= null) true

var url = HttpContext.Current.Request.Url;
ar authority = HttpContext.Current.Request.ServerVariables[”HTTP_HOST"];

var expectedAuthority = url.Port = 48588 ? “www.planmynight.net:48588" : "planmynight.net”;

ar pathAndQuery = url.PathAndQuery;

if (pathandQuery == "/default.aspx")

eLe

pathandQuery = "/";
H

Figure 10-13 Moved the pinned DataTip away from the source code

7. Being pinned the DataTip window will stick where you have pinned which means that it
will not be in view anymore if you trace into another file. But in some cases it is
important for the DataTip window to be visible at all time. For instance it is interesting
for global variables that are always in context or for multi-monitor scenarios. To move a
DataTip you have to first unpin it by clicking the pushpin in the DataTip management
bar then you will see that it will turn yellow. That is your indication that it is now
movable wherever you want for instance: over the Solution Explorer, a second monitor,
over your desktop, or any other window. Take a look at Figure 10-14 for an example.

Figure 10-14 Unpinned DataTip over the solution Explorer and the Windows Desktop.

Note |If the DataTip is not pinned and if the debugger stops in another file and method
and that the DataTip contains items that are out of context the DataTip windows will look
like what you see below. You can retry to have the debugger evaluate the value of an

element by clicking this button: £ putitis possible that if that element has no meaning
in this context that nothing happens.

public partial class Default : Page

public void Page_Load(object sender, System.EventArgs e)

string originalPath = Request.Path;
HETpCantext. Current. Rewr ftePath (Request. Apph:auanpath false);
IHttpHandler httpHandler = new MycHttpHandler();
httpHandler.ProcessRequest(HttpContext. Current);
HttpContext.Current.RewritePath(originalPath, false);

Note You will get an error message if you try to pin outside the editor.

Note You can also pin any child of a pinned item. For instance if you look at url and
expand its content by pressing the + you will see that you can also pin a child element.

B @ url {http://localhost48580/Default.aspx)
o AbsolutePath |, */Default.aspx”
5 Absolutelri A + "http://localhost:48580/ Default. aspx”
75 Authority 3 + "localhost:48580"
5 DnsSafeHost | A - "localhost’
R Fragment 2 -
75 Host 3 + "localhost”
S HostNameType Dns
A IsAbsoluteUri true
S IsDefaultPort false
5 IsFile false
7 IsLoopback true
 IsUne false
4 LocalPath 4+ "/Default.aspx” R
5 OriginalString | <. - "http://localhost48580/ Default.aspx”
% PathAndQuery | A + "/Default.aspx”
-]

8. Before stopping the debugger go back to the global.ascx.cs if you are not already in
there and re-pin the DataTip window. Now stop the debugging session by pressing the
Stop Debugging button in the debug toolbar (L) or by pressing Shift+F5. Now if

you hover your mouse over the blue pushpin in the breakpoint gutter you will see the

values from the last debug session which is a nice enhancement over the watch window.

Take a look at Figure 10-15 for what you should see.

}
Value from last debug session
B protected void Application_BeginRequest(object sender, £\ {http://localhost48580/Default.aspx}

authority localhost:48580°
var ur‘l: fittpontext Current. Request.Url; (authority = null) true
o ar_authority = HttpContext.Current.Request. ServerVaiUNINg Defaultaspx
var expectediuthority = url.POrt == 48580 2 “WiW.PLaluwy imgue s s mome o s iegie e

Figure 10-15 Values from the last debug session for a pinned DataTip.

Note Similarly as with the breakpoints you can export/import the DataTips by going to the Debug
Menu and selecting Export DataTips and Import DataTips.

Using the Minidump Debugger

Many times in real world situation you will have access to a minidump from your product
support team and apart from their bug descriptions and repro steps it might be the only
thing you have to help debug a customer bug. Visual Studio 2010 enables a few
enhancements to the minidump debugging experience.

Visual Studio 2008 In Visual Studio 2008 you could debug managed application or minidump
files but you had to use an extension if your code was written in managed code. You had to use a
tool called SOS and load it in the debugger using the Immediate Window. You had to attach the
debugger both in native and managed mode and you couldn’t expect to have information in the
Call Stack or Locals Window. You had to use commands for SOS in the immediate to help you go
through minidump files. With application written in native code you were using normal debugging
windows and tools. To read more about this or just to refresh on the topic you can read the Bug

Slayer column in MSDN magazine here: http://msdn.microsoft.com/en-
us/magazine/cc164138.aspx.

Let's see the new enhancements to the minidump debugger but first we'll need to create a
crash from which we will be able to generate a minidump file.

1. In the Solution Explorer in the PlanMyNight.Web project rename the file Default.aspx
to DefaultA.aspx. Note the A appended to the end of the word Default.

2. Make sure you have no breakpoints left in your project and to do that look in the
breakpoints window and delete any breakpoints left there with any of the ways learned
earlier in the chapter.

3. Press F5 to start debugging the application and depending on your machine speed you
should see pretty soon after the build process is complete an unhandled exception of
type HttpException. While the bug is really simple in this case you will go through the
steps of creating the minidump file and debugging it. Take a look at Figure 10-16 to see
what you should see at this point.

requestContext.HttpContext. Ttems[ControllerExportEntryliame] = controllerExport;
return controllerExport.Value;

I HtipException was unhandied by user code

The controller for path ‘/Default.aspx’ was not found or does not implement

lic override void Releasecontroller(IController controller) Controlles

var export = Httplontext.Current.Items[ControllerExportEntryName] as Lazy<IContr: Troubleshooting tips:
if (export = null) Get general help for this exception.

{

this.container.ReleaseExport (export);

PR ES

}
base.ReleaseController (controller); Search fodmoc Bl ulinE
Actions:
Jate static TEnumerable<string> GetNamespaceFromRoute(RequestContext requestContey YiEw Detall.
Enable editing

object routeNamespacesObj; Copy exception detail to the clipboard

Figure 10-16 Unhandled exception you should expect.

4. Itis time to create the minidumep file for this exception. Go to the Debug menu and
select Save Dump As... as seen in Figure 10-17. You should see the name of the
process from which the exception was thrown. In your case the process from which the
exception was thrown was Cassini or the Personal Web Server in Visual Studio. Keep the
file name proposed (WebDev.WebServer40.dmp) and save the file on your desktop.
Note that it might take some time to create the file as the minidump file size will be
close to 300 MB.

http://msdn.microsoft.com/en-us/magazine/cc164138.aspx
http://msdn.microsoft.com/en-us/magazine/cc164138.aspx

Debug | Team Data Tools
Windows
Continue

@ Stop Debugging
Terminate Al

G Restart

(5 Attach to Process...

Exceptions..

Step Into

[Z Step Over

E Step Out
Toggle Breakpoint
Mew Breakpoint

9 Delete All Breakpoints

O Disable All Breakpoints
Clear All DataTips
Export DataTips ...
Import DataTips ...
Save Dump As..
Options and Settings...

Figure 10-17 Saving the minidump file.

. Stop Debugging by hitting Shift+F5 or the Stop Debugging button.

. Next go to the File menu and close your solution.

Test Window He
3
F5
Shift+F5

Ctrl+Shift+F5

Ctrl+Alt+E
Fi1
F10
Shift+F11
Fa
>
Ctrl+Shift+F9

. In the File menu now click Open and point it to the desktop to load your minidump file

named WebDev.WebServer40.dmp. Doing so will open the minidump Summary Page.
will give you some summary information about the bug you are trying to fix. You can
take a look at Figure 10-18 for what you should see. Out of that page and before you
really start to debug you will get basic information like: Process name, process
architecture, OS version and CLR version, modules loaded as well as some actions you
can take from that point. From this place you can set the paths to the symbol files.

t

Luckily you have in the modules list the version and the path on disk of your module so

finding the symbols and source code should be fairly easy. The CLR version is 4.0
therefore it is possible to debug right here in Visual Studio 2010.

10.

WebDev.WebServerd0.dmp

Minidump File Summary

01:58:45 AM
~ Dump Summary Notifications
Dump File WebD bServerd.dmp : C:\Users\Patrice\ Desktop Dev.\WebServerd0.dmp L Interpreter is Enabled
Last Write Time 2/22/20101:58:45 AM Disable IL Interpreter
Process Name WebDev,WebServerd0.exe : C:\Program Files\Common Files\Microsoft Sharec’\DevServer\10.0\WebDev.WebServerdi
Process Architecture
Exception Code OxE0434F4D Actions
Exception Information An exception came from the CLR
Heap Information Present b Debug with Mixed
ol m 4 P Debug with Native Only
<.
~ System Information lj setsymbol paths
53 Copy all to clipboard
05 Version 617600
CLR Version(s) 40301281
“ Modules
Search
Module Name Module Version Module Path
WebDev.WebServerdd.exe 100301281 C:\Program Files\Common Files\Mi
ntdl.dil 61.7600.16385 C:\Windows\System32\ntdll.dil
mscoree.dil 40311060 C:AWindows\System32imscoree.dil
kernel32.dll 61760016481 C\Windows\System32\kernel32.dll
KERNELBASE.dIl 61.7600.16385 C\Windows\System32\KERNELBAS
advapi32.dil 61760016385 C\Windows\System32\advapi32.dil
msvertdll 70760016385 C:\Windows\System32\msvert.dil
sechost.dll 61760016385 C:\Windows\System32\sechost.dil
rpertd.dil 61760016385 C:\Windows\Systern32\rpertd.dil
mscoreei.dll 40301281 C:AWindows\Microsoft NET\Framey
shiwapi.dil 61.7600.16385 C:\Windows\Systern32\shiwapi.dil
gdiz2.dll 61760016385 C:\Windows\System32\gdi32.dil
user32.dil 61760016385 CAWindows\System32\user32.dll
Ipkdll 61.7600.16385 C\Windows\System32\Ipk.dIl
uspl0.dll 1626760016385 C:\Windows\System32\uspl0.dil
imm32.dll 61760016385 C:\Windows\System32\imm32.dIl

Figure 10-18 Minidump summary page.

To start debugging locate the Actions list on the right hand side of the summary page
and click on Debug with Mixed.

You should almost see immediately a first chance exception like in Figure 10-19. In this
case it tells you what the bug is but it won't be always the case so let's continue and
click the Break button.

Microsoft Visual Studio

Afirst chance exception of type 'System.WebHitpException’ occurred in p
A PlanMyNight Web.DLL

Additienal information: The controller for path ‘/Diefault.aspx’ was not found or
does not implement IController.

=

Figure 10-19 First chance exception.

You should see a green line indicating the next instruction to execute which means that
the exception was thrown just before that. If you look at the source code you will see in
your Autos window that the controllerExport variable is null and that just before that
if that variable was null we would throw an HttpException if the file to load was not
found. In this case the file to look for was Default.aspx as you can see in the Locals
window in the controllerName variable. You can glance at many other variables,
objects, etc. in the Locals and Autos windows containing the current context. In this case

we only have one call that is belonging to our code so the call stack indicates that that
the code before and after is external to our process. If it would be a deeper chain of
calls in our code you could step in the code back and forth before and after and look at
the variables. Look at Figure 10-20 for a summary view of all of that.

MefControllerFactory.cs > QUEVEIRTE LI -~

%2 Microsoft.Sampl ek] requestContext, string controllerame) -

Name Lang ~ +
KERNELBASE.dIlT5319617()
KERNELBASE.dIlT5319617()
[Extemal Code]
%] PlanMyNight.Web.DLLIMicrosoft.Samples.PlanMyNight Web Infrastructure MefControllerFactor C#

[Extemal Code]

kernel32.dII756211340 =
ntdll.d b3750 | |

var controllerExport = this.container.GetExports<IController>(controllerName). FirstOrbefault();
if (controllerExpart == null)
{
throw new HttpException(
424,
string.Format(CultureInfo.InvariantCulture, "The controller for path '{8}' was not found or does not implement ICant

}

% requestContext.HttpContext. Items[ControllerExportEntryllame] = controllerExport;
return controllerExport.Value;

0% < i] »

Mol Locals TR Xx

MName Value Type ~ | | Name Value Type 4

@ controllerExport null 9| Systeml

7 requestContext HttpContl {System. Web. HttpContextWrapper} 3| System.\ @ this {Microsoft.Samples.PlanMyNight Web.Infrastruct: (0| Microsof

=7 requestContext.HttpCont Count = 2 3| System.(@ requestContext | {System.Web.Routing.RequestContext} 3| System.\
=7 requestContext.HttpCont null [object | _ @ controllerName | "Defaultaspx” A +|string

7 requestContext HttpCont {System.Web.HttpRequestWrapper} 9 System\| @ controllerType | null) System.1
5 requestContext HttpCont| "/Default.aspx” 2, = string & namespaces null i) System.C

@ this {Microsoft.5amples.PlanMyNight.Web Infra (i} Microsof @ controllerBxport | null | system.L

& Immediate...

SR 5 Watch 1 ME: Breakpoints B Command...

B Output

Figure 10-20 Autos, Locals, Call Stack and Next Instruction to execute.

11. Ok good job you have found the bug so stop the debugging by hitting Shift+F5 or
click on the Stop Debugging button and fix it by reloading the PlanMyNight solution
and by renaming the file back to default.aspx. Then rebuild the solution by going to the
Build menu and selecting Rebuild Solution. Now press F5 and the application should be
working again.

Web.Config Transformations

This next new feature while small is one that | believe will delight many developers because it
will just save some time while debugging. The feature is the Web.Config transformations that
allow you to have transform files with the differences between debug and release
environments. As an example, connection strings are often different from an environment to
the other and therefore by creating transform files with the different connection strings and
because ASP.NET provides tools to change (transform) web.config files you will always end up
with the right connection strings for the right environment. To learn more about how to do it
take a look at this article on MSDN: http://go.microsoft.com/fwlink/?Linkld=125889.

Creating Unit Tests

Most of the unit test framework and tools are unchanged in the Visual Studio 2010
Professional. It is in other versions of Visual Studio 2010 that the change in test management

http://go.microsoft.com/fwlink/?LinkId=125889

and test tools is really apparent. Features like Ul Unit Tests, IntelliTrace, and Microsoft Test
Manager 2010 are available in other product versions like Visual Studio 2010 Premium, Visual
Studio 2010 Ultimate. To see which features are covered in the Application Lifecycle
Management and more specifically please refer to this article on MSDN:
http://msdn.microsoft.com/en-us/library/ee789810(VS.100).aspx

Visual Studio 2008 With Visual Studio 2008 you had to own either Visual Studio 2008 Team
System or Visual Studio 2008 Team Test in order to have the ability to create and execute tests out
of the box within Visual Studio 2008. Another option back then was to go with a third party option
like Nunit.

In this part of the chapter | am going to simply show you how to add a unit test for a class
you will find in the Plan My Night application. | will not spend time on defining what is a unit
test or what it should contain but rather show you within Visual Studio 2010 how to add tests
and execute them.

You will add unit tests to the Plan My Night application for the Print Itinerary Add-in. To
create unit tests you will open the Solution from the companion content in the DebuggerStart
folder. If you do not remember how you can look at the first page of this chapter on how to
do it. Once you have the solution open just follow the next steps.

1. From the Solution Explorer expand the project PlanMyNight.Web and then expand the
Helpers folder. Then double-click the file ViewHelper.cs to open it in the code editor.
Take a look at Figure 10-21 to make sure you are at the right place.

4 (3} PlanMyNightWeb
;[Properties
. [References
, [App_Browsers
» [y App_Data
> [l Areas
. [Content
;[Controllers
4 [Helpers
» [Liveld
#] JsonCacheAttribute.cs
#] MembershipWrappers.cs
] RoutingManager.cs
#] ServiceFactory.cs
#] SessionltineraryContainer.cs
#] ViewHelpers.cs
] ViewModelExtensions.cs

m

Figure 10-21 PlanMyNight.Web project and ViewHelper.cs file in the Solution Explorer.

2. In the code editor you can add unit tests in two different ways. You can right-click on a
class name or on a method name and select Create Unit Tests... You can also go to the
Test menu and select New Test... We are going to explore the first way of creating unit
tests. This way Visual Studio automatically generates some source code for you. Right-
click on the method name GetFriendlyTime and select Create Unit Tests... Take a look
at Figure 10-22 to see what it looks like.

http://msdn.microsoft.com/en-us/library/ee789810(VS.100).aspx

public static string GetFriendlyTime(int totalMinutes)

i Refactor 3
if (totaldinutes > @) Organize Usings v
{ =
int hours = totalMinutes / 6@; W] Create Unit Tests...
int minutes = totalMinutes ¥ 60; Create Private Accessor »
string time = string.Empty; o .
iF (hours > 9) =l, Insert Snippet. Ctrl+K, Ctrl=X
{ H, Surround With... Ctrl+K, Ctrl+5
) tine += string.Format(CultureInfo.Invariat \g o oop cie o
Find All References Shift+F12
zf (minutes > @) G View Call Hierarchy Ctrl+K, Crl+T
time += string.Format(CultureInfo.Invarial Breakpoint b
¥ % RunTo Cursor Ctrl+F10
return time.Trim(); & Cut Crl+X
¥ 53 Copy Ctrl+C
return "-"; i Paste Ctrl+V
} Qutlining »

Figure 10-22 Contextual menu to create unit tests from right-clicking on a class name.

3. After selecting Create Unit Tests... you will be presented with a dialog that will by
default have selected the method your selected from that class. You will then need to
select where you want to create those unit tests and to do so click on the drop-down
combo box at the bottom of this dialogue and select PlanMyNight.Web.Tests. If you
didn’t have an existing location you would have simply selected Create a new Visual
C# test project... from the list. Take a look at Figure 10-23 for what you should be
seeing.

Create Unit Tests o el
Current selection: Fitter =
Types
g PlanMyNight Web i

o [@ {} Microsoft.Samples.PlanMyNight Web
> 119 Microsoft.Samples.PlanMyNight. Web.AccountMembershipService
> [[]4 Microsoft.Samples.PlanhyNight.Web. ActivityHelper
> 014 Microsoft.Samples.PlanhyNight.Web.FormsAuthenticationService
> [0~ Microsoft.Samples.PlanMyNight.Web.JFormsAuthentication
> [[]= Microsoft.Samples.PlanhyNight. Web IMembershipService
> [Microsoft.Samples.PlanhyNight. Web.ltineraryHelper
> [0 % Microsoft.Samples.PlanhyNight Web.JsonCacheAttribute
> [[19 Microsoft.Samples.PlanhyNight. Web.MucApplication
> [[1%4 Microsoft.Samples.PlanyNight. Web.RoutingManager
> [0 % Microsoft.Samples.PlanhyNight. Web.ServiceFactory
> [[] % Microsoft.Samples.PlanhyNight.Web. H yContainer
4[] %2 Microsoft.Samples.PlanhMyNight Web.TimeHelper

@ GetFriendlyTime(System.Int32)
> 1% Microsoft Samples.PlanhyNight. Web. UserP
> [[]%¢ Microsoft.Samples.PlanhyNight Web.ViewModelExtensions
> [[1%4 Microsoft.Samples.PlanhyNight.Web._Default

> [4} Microsoft.Samples.PlanhyNight.Web. Controllers

>[4} Microsoft.Samples.PlanhyNight.Web Infrastructure

> [C]{} Microsoft.Samples.PlanMyNight.Web.Properties

> [C]4} Microsoft.Samples.PlanhyNight.Web.Ux

b il \

!

[s][s |

Figure 10-23 Selecting the method you want to create a unit test against.

4. The dialog window will then switch to a test case generation mode and you will see a
progress bar. Once this is complete you will have a new file created named
TimeHelperTest.cs with auto-generated code stubs for you to modify.

5. You will now remove the method and its attributes because we will create three new
test cases for that method. Remove the following code.

/// <summary>
///A test for GetFriendlyTime
///</summary>

// TODO: Ensure that the UrlToTest attribute specifies a URL to an ASP.NET page (for
example,

// http://.../Default.aspx). This is necessary for the unit test to be executed on the
web server,

// whether you are testing a page, web service, or a WCF service.
[TestMethod ()]
[HostType ("ASP.NET")]

[AspNetDevelopmentServerHost ("C:\\Users\\Patrice\\Documents\\Chapter
10\\DebuggerStart\\code\\P1anMyNight.wWeb", "/")]

[Ur1ToTest("http://Tocalhost:48580/")]

public void GetFriendlyTimeTest()

{
int totalMinutes = 0; // TODO: Initialize to an appropriate value
string expected = string.Empty; // TODO: Initialize to an appropriate value
string actual;
actual = TimeHelper.GetFriendlyTime(totalMinutes);
Assert.AreEqual(expected, actual);
Assert.Inconclusive("Verify the correctness of this test method.");

}

. You will now add the three simple test cases validating three key scenarios used by
PlanMyNight. To do that insert the following source code right below the method
attributes that were left behind when you deleted the block of code in step 5.

[TestMethod]

public void ZeroReturnsSlash()

{

Assert.AreEqual("-", TimeHelper.GetFriendlyTime(0));
}
[TestMethod]

public void LessThan60MinutesReturnsValueInMinutes()

{
Assert.AreEqual("10m", TimeHelper.GetFriendlyTime(10));

[TestMethod ()]

public void MoreThan60MinutesReturnsValueInHoursAndMinutes()
{

Assert.AreEqual("2h 3m", TimeHelper.GetFriendlyTime(123));
}

Now in the PlanMyNight.Web.Tests project create a solution folder called Helpers. Then
move your TimeHelperTests.cs file to that folder so that your project looks like Figure
10-24 where you are done.

4 (G PlanMyNight.Web.Tests
» [Properties
» [References
a [y Controllers
] AccountControllerFixture.cs
<#] HinerariesControllerFixture.cs
#] SearchControllerFixture.cs
4] SiteMasterControllerFixture.cs
4 [Helpers
#] TimeHelperTest.cs
3 App.config
4] DummyCachingProvider.cs
@] HineraryExtensionFixture.cs
] MembershipWrappersFixture.cs
#] RoutingManagerFixture.cs
#] SessionltineraryContainerFixture.cs
4] UserProfileExtensionsFixture.cs
4] ViewModelExtensionsFixture.cs

Figure 10-24 TimeHelperTest.cs in its Helpers folder.

Now it is time to execute your newly created tests. To only execute your newly created
tests you need to go in the code editor and place your cursor on the class name public
class TimeHelperTest. Then you can either go to the Test menu, select Run and
finally select Test in Current Context or using the keyboard shortcut CTRL+R, T. Look
at Figure 10-25 for a reference.

| Test | Window Help
%1 NewTest.

= @3 Create New Test List...

R EYYRET

= Run ¥ | b Testsin Current Context Ctrl+R, T
it Debug ¥ | % AllTests in Solution Ctrl+R, A
4 Select Active Test Settings v

Edit Test Settings v

Windows v

Figure 10-25 Tests Execution Menu

Performing this action will only execute your three tests and you should see the
following Test Results Window appear at the bottom of your editor with the test results.
Look at Figure 10-26 for the Test Results window.

Test Results
8“3 | @3 | Patrice@PATRICE-TEST 2010-03- ~|| % Run = i Debug ~ Il 4 | 2 » % J | Group By: | [None] ~| || 1A Columi - | <Type keyword> -
) Testrunwerning Results: 3/3 passed; Item(s) checked: 0
Result Test Name - Project Error Message
1@ Passed LessThan60MinutesReturnsValuelnMinutes PlanMyNight Web.Tests
Q@ Passed MereThang0MinutesReturnsValugnHoursAndMinutes PlanMyNight Web. Tests
2@ Passed ZeroReturnsSlash PlanMyNightWeb. Tests

Figure 10-26 Test Results window for your newly created tests.

Note Depending on what you select you will have a different behavior when you select to
execute Tests in Current Context. For instance, if you select a test method like
ZeroReturnsSlash, you will only execute this test case but if you click outside the test class you
could end up executing every single test cases which will be the equivalent of selecting All Tests
in Solution.

New Threads Window

The immergence of computers with multiple cores and the fact that the language features are
giving developers many tools to take advantage of those cores creates a new problem: the
difficulty to debug concurrency in applications. The new threads window enables you the
developer to pause threads and searching the calling stack and see similar artifacts that you
would see using the famous Syslnternals Process Monitor (http://technet.microsoft.com/en-
us/sysinternals/bb896645.aspx). The Threads window can be displayed by going to Debug
then selecting Windows and Threads while debugging an application. Take a look at Figure
10-27 for a peek at the Threads Window while debugging Plan My Night.

o public Tuple<PagingResult<Activitys, ActivityAddress> SearchActivities(NaturalSearchQuery query, string token)
// request
& SearchRequest searchRequest - GetBaseSearchRequest(token, query.PageSize, query.Page)s|
// category filter - trick bing maps to use the same category twice
var filter = new FilterExpressionClause();
Threads M=E3
Search: | ~| K Search Call Stack | ¥ ~ | Group by: | Process Name -] Columns - | g g |\ i) | 5] 5
ID ManagedID Category Name Location
~ iexplore.exe (id = 2512) : C:\Program Files\Internet Exploreriexplore exe
¥| |89 |0 () Worker Thread| Thread BS0 ~ JScript anonymous function
A WebDev.WebServerd0.EXE (id = 3460) : C:\Program Files\Common Files\microsoft shared\DevServer\10.0\WebDev.WebServerd0.EXE
¥| [s0% 1 [0 Main Thread | Main Thread | v [Managed to Native Transition]
HECIE _| Worker Thread| <No Name> | <not available>
¥ 2740 |3 | Worker Thread | Worker Thread | + [Managed to Native Transition]
V| |48 0 | Worker Thread| <No Name> | <not available>
| 612 0 | Worker Thread| <No Name> | <not available>
\'d 4472 0 __| Worker Thread | <Ne Name> <not available> =
¥ 5176 7L | Worker Thread| <No Name> | <not available>
AR | Worker Thread| <No Name> | <not available>
100 % ¥ = 4016 70 __| Worker Thread Worker Thread A Microsoft.Samples.PlanMyNight.Bing. P ice.SearchActivities
PlanMyNight.Bing.DLL!Microsoft.Samples.PlanMyNight.Bing.BingMapsService.SearchActivities(Microsoft. Samples.Plan
T PlanMyNight Data.DLLIMicrosoft.Samples.PlanMyNight.Data BingActivitiesRepository Search(Microsoft.Samples.Planh
PlanMyNight.Data.DLL!Microsoft.Samples.PlanMyNight.Data.Caching.CachedActivitiesRepositery.Search(Microsoft.San
hd PlanyNight Web.DLLIMicrosoft.Samples.PlanMyNight Web. Controllers. SearchController.Search(Microsoft. Samples.Plz
=
Fle 22 e | Worker Thread| <No Name> |~ [In a sleep, wait, or join]
v
v
3 o
JERGIETY B CallStack WE; Breakpoints Command \ mmediate ow B Output BB Test

Figure 10-27 Displaying the Threads Window while debugging Plan My Night.

It allows you to freeze threads and thaw them whenever you are ready to let them continue. It
can be really useful when you are trying to isolate particular effects... You can debug both
manage code and unmanaged code. If you are application uses thread you will definitely love
this new feature of the debugger in Visual Studio 2010.

Visual Studio 2008 In Visual Studio 2008 you finally had a thread debugger window worthy of
this name. There was no filtering, call-stack searching and expansion, and grouping. The columns
were in a fixed order and you couldn't easily without using a separate tool affinity masks, process
names as well as managed IDs.

http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx

Summary

In this chapter, you have learned about new ways of managing your debugging session
through new breakpoints enhancements, new data inspection and data visualization
techniques as well as how the new minidump debugger and tools can help you solve real
customer problems from the field. You have also seen how to raise the quality of your code
by writing unit tests and how Visual Studio 2010 Professional can help you doing this. Multi-
cores machines are now the norm and so are multi-threaded applications. Therefore new
debugger enhancements around finding issues in multi-threaded applications with specific
debugger tools is great news.

Finally throughout this chapter you also saw how Visual Studio 2010 Professional has raised
the bar in terms of debugging applications and giving you the professional developers the
tools to debug today’s feature rich experiences. While you have seen that it is a clear
improvement over what was available in Visual Studio 2008 and how you will be able to save
time and money by moving to this new debugging environment and that Visual Studio 2010
is more than a small iteration it is a huge leap in productivity for developers. The gap between
2005, 2008 versus Visual Studio 2010 in terms of debugging is less big. Different versions of
Visual Studio 2010 give you a great list of improvements around the debugger and testing.
My personal favorites are IntelliTrace (http://msdn.microsoft.com/en-
us/library/dd264915(VS.100).aspx) available only in Visual Studio 2010 Ultimate and Microsoft
Test Manager which will enable test teams to have a much better stories using Visual Studio
2010 and Visual Studio 2010 Team Foundation Server. (http://msdn.microsoft.com/en-
us/library/bb385901(VS.100).aspx)

http://msdn.microsoft.com/en-us/library/dd264915(VS.100).aspx
http://msdn.microsoft.com/en-us/library/dd264915(VS.100).aspx
http://msdn.microsoft.com/en-us/library/bb385901(VS.100).aspx
http://msdn.microsoft.com/en-us/library/bb385901(VS.100).aspx

	Cover
	Copyright Page

	Introduction
	Chapter 8: From 2008 to 2010: Business Logic and Data
	Chapter 9: From 2008 to 2010: Designing the Look and Feel
	Chapter 10: From 2008 to 2010: Debugging an Application

