
Deploying .NET
Applications
Learning MSBuild and ClickOnce

Sayed Y. Hashimi and
Sayed Ibrahim Hashimi

Deploying .NET Applications: Learning MSBuild and ClickOnce

Copyright © 2006 by Sayed Y. Hashimi, Sayed Ibrahim Hashimi

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-652-4

ISBN-10 (pbk): 1-59059-652-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Hassell
Technical Reviewer: Bart De Smet
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Richard Dal Porto
Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Kinetic Publishing Services, LLC
Proofreader: Dan Shaw
Indexer: Brenda Miller
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

To my parents, Sayed A. and Sohayla Hashimi,
and to my wife and daughter, Farishta and Fairoza.

—Sayed Y. Hashimi

To my parents, Sayed A. and Sohayla Hashimi,
because this would have not been possible without their support and guidance.

—Sayed Ibrahim Hashimi

Contents at a Glance

About the Authors . xi

About the Technical Reviewer . xiii

Acknowledgments . xv

Introduction . xvii

■CHAPTER 1 Deployment Prerequisites . 1

■CHAPTER 2 The Unified Build Engine: MSBuild. 21

■CHAPTER 3 MSBuild: By Example . 45

■CHAPTER 4 Extending MSBuild . 75

■CHAPTER 5 Introducing Team Foundation Server and Team Build 107

■CHAPTER 6 Deploying Smart Clients with ClickOnce . 137

■CHAPTER 7 ClickOnce Updates, Security, and the Bootstrapper 161

■CHAPTER 8 The ClickOnce Data Directory and Deploying Prerequisites 185

■CHAPTER 9 ClickOnce Tools and Scenarios . 219

■INDEX . 253

v

Contents

About the Authors . xi

About the Technical Reviewer . xiii

Acknowledgments . xv

Introduction . xvii

■CHAPTER 1 Deployment Prerequisites . 1

Types of Applications . 1

Windows Forms (Smart Client) Applications . 2

Web Applications . 6

Web Services . 9

Smart Device Applications . 10

Windows Services . 11

Console Applications . 13

Hosted Applications . 13

Application Architectures . 14

Client-Server Architecture . 14

N-Tier Architecture . 15

Service-Oriented Architecture . 16

Strategies for Deploying the .NET Framework . 17

Where Do You Need the .NET Runtime? . 17

Typical Deployment of a Smart Client . 18

Typical Deployment of a Thin Client . 18

Summary . 19

■CHAPTER 2 The Unified Build Engine: MSBuild. 21

Introducing Build Tools and Systems . 22

Make-Style Build Tools . 22

Ant/NAnt . 23

Introducing MSBuild . 24

Properties . 26

Targets . 27

Tasks . 37

Summary . 43
vii

■CHAPTER 3 MSBuild: By Example . 45

Introducing Well-Known Metadata . 45

Formatting Your Output. 48

Editing MSBuild Files with IntelliSense . 54

Integrating MSBuild into Visual Studio. 55

Introducing Custom Metadata . 57

Understanding the Difference Between @ and % . 59

Using Environment Variables in Your Project. 63

Reusing MSBuild Project Elements . 63

Dealing with MSBuild Errors . 69

Summary . 74

■CHAPTER 4 Extending MSBuild . 75

Logging with MSBuild. 75

Writing a Logger. 77

Using NUnit and MSBuild . 85

Summary . 106

■CHAPTER 5 Introducing Team Foundation Server
and Team Build . 107

Introducing Visual Studio Team System (VSTS) . 107

Introducing Team Build. 108

Introducing the Team Foundation Build Architecture. 108

Team Foundation Build Client . 109

Application Tier. 110

Data Tier . 110

Build Machine. 110

Drop Location . 110

Using Team Foundation Build . 110

Creating a New Team Project. 111

Understanding the Team Project Fundamentals. 112

Work Items . 113

Documents . 113

Reports . 114

Team Builds . 114

Source Control . 114

Placing Code in Source Control . 114

■CONTENTSviii

Using Team Build . 117

Understanding How Team Build Works . 123

Extending the Team Build. 127

Handling Errors During a Team Build . 131

Automating Team Build. 133

Summary . 135

■CHAPTER 6 Deploying Smart Clients with ClickOnce 137

Introducing Side-by-Side Deployment. 138

Looking at the Previous Approaches of Deploying Windows Forms
Applications. 139

MSI Deployment. 139

No-Touch Deployment . 140

The Updater Application Block. 141

Introducing ClickOnce. 144

Introducing the ClickOnce Deployment Methods. 145

Introducing the ClickOnce Architecture . 145

Seeing ClickOnce in Action . 148

Updating and Versioning with ClickOnce. 151

Introducing ClickOnce Security . 154

Customizing Deployment with the ClickOnce API 155

Understanding the Bootstrapper . 157

Summary . 159

■CHAPTER 7 ClickOnce Updates, Security, and the Bootstrapper 161

Understanding the ClickOnce Manifest Files . 161

Offline vs. Online Applications. 164

Performing ClickOnce Updates . 166

Configuring Update Notification. 167

Configuring Application Update Policy . 167

Understanding ClickOnce Security . 169

Using Trusted Publishers in ClickOnce . 170

Seeing a Trusted Publisher in Action . 172

Introducing Code Access Security (CAS) . 173

Introducing Partially Trusted Applications with ClickOnce 175

Full Trust vs. Partial Trust . 179

Available Permissions vs. Actual Permissions. 181

Deploying Prerequisites with ClickOnce . 181

Using the Bootstrapper to Install Prerequisites. 181

Summary . 183

■CONTENTS ix

■CHAPTER 8 The ClickOnce Data Directory and Deploying
Prerequisites . 185

Working with Application Files . 185

Working with Data Files . 190

Considering Security When Using the ClickOnce Data Directory 200

Working with Prerequisites . 201

Understanding the Prerequisite Manifest Files 205

Building a Custom Prerequisite . 210

Summary . 217

■CHAPTER 9 ClickOnce Tools and Scenarios . 219

Using the Bootstrapper Manifest Generator (BMG) 219

Using the Manifest Generation and Editing (MAGE) Tool. 228

MAGE Scenario: ClickOnce Application Has to Be Deployed
to More Than One Server . 229

MAGE Scenario: The Producer of the Application Doesn’t
Know Where the Application Will Be Hosted for
Deployment . 229

MAGE Scenario: ClickOnce Application Has to Delay-Sign
Assemblies . 230

MAGE Scenario: ClickOnce Application Assemblies Need
to Be Obfuscated . 231

Creating the ClickOnce Manifest Files with the MAGE Tool 232

Creating the Application Manifest . 233

Creating the Deployment Manifest . 235

Using MSBuild with ClickOnce . 237

Creating the ClickOnce Deployment Using MSBuild 237

Using MSBuild and ClickOnce As Part of a Build Process. 239

Looking at Some Common ClickOnce Scenarios . 245

Passing Parameters to a ClickOnce Application 245

Installing the Publisher Certificate Programmatically
with a Prerequisite . 246

Creating File Type Associations for ClickOnce Deployments 249

Creating a Desktop Icon for a ClickOnce-Deployed
Application . 250

Requiring a Prerequisite After the Initial Install. 250

Deploying a ClickOnce Application from a CD/DVD 251

Summary . 252

■INDEX . 253

■CONTENTSx

About the Authors

■SAYED Y. HASHIMI was born in Kabul, Afghanistan, and now resides
in Jacksonville, Florida. Sayed has expertise in the areas of healthcare,
banking, logistics, scientific computing, and civil/structural engi-
neering. In his professional career, Sayed has developed large-scale
distributed applications with a variety of programming languages
and platforms, including C++, Java, and .NET. He has published arti-
cles in major software journals and is the principal author of Pro
Service-Oriented Smart Clients with .NET 2.0 (Apress, 2005). Sayed
has a master’s degree in engineering from the University of Florida.
You can reach Sayed by visiting http://www.sayedhashimi.com.

■SAYED IBRAHIM HASHIMI has a computer engineering degree from
the University of Florida. He works in Jacksonville, Florida, as a
developer and architect. He is an expert in the financial, education,
and collection industries. His primary focus is working with .NET,
but he also has extensive industrial experience with Java-based tech-
nologies. Sayed’s research interests include a wide range of topics
including computer graphics, peer-to-peer technologies, and lucid
dreaming. You can read Sayed’s blog at http://www.sedodream.com.
When he’s not busy creating software or dreaming, you’re likely to
find him at the local coffee shop.

xi

About the Technical Reviewer

■BART DE SMET was born on February 11, 1983, in Belgium and has a master’s degree in com-
puter science from Ghent University. Since early 2000, Bart has been involved in the wonderful
world of .NET and is also a Visual C# MVP. While keeping his brain busy with further university
studies, he focuses on C#, the CLR, SQL Server 2005, and WinFX. Regularly you can find Bart
speaking at various European Microsoft events, and if time permits, he writes articles for the
local MSDN Web site. To read about his adventures in the .NET galaxy, check out Bart’s blog at
http://blogs.bartdesmet.net/bart.

xiii

Acknowledgments

Writing this book took effort from not only the authors but also from some of the very tal-
ented staff at Apress. Therefore, we would like to thank Jonathan Hassell, Richard Dal Porto,
Ellie Fountain, and Kim Wimpsett. We would also like to acknowledge the technical reviewer,
Bart De Smet, for taking the time to review the book. His corrections and commentary were
invaluable.

xv

Introduction

This book covers two important aspects of the software life cycle: build and deployment. The
coverage of these crucial topics is only half the attraction of this book, though. The other half
is the technologies covered: MSBuild and ClickOnce.

What Is MSBuild?
Previously the build process that Visual Studio followed was basically a black box and was dif-
ficult to customize. With the arrival of Visual Studio 2005 and .NET 2.0 comes the arrival of the
Microsoft Build Engine, otherwise known as MSBuild. MSBuild is the utility that Visual Studio
uses to build your managed (C#, VB .NET, and J#) projects. MSBuild is an XML-based build engine
and a tool that has been developed with customizability and extensibility in mind from its
conception. By using MSBuild, you can change how your projects are built, creating customiza-
tions to fit your needs.

With the advent of MSBuild, you no longer have to rely on third-party tools to handle the
custom aspects of building your application. In addition, not only is this approach supported
by Microsoft, but it is completely integrated with Visual Studio. If you need to tweak the settings
for the C# compiler or how resources are generated, you now have this ability. The entire build
process is open, and you can customize it in any way necessary. With other third-party tools
this is simply unachievable.

In this book, we will start with MSBuild concepts that you need to know in order to get
started, and then we will cover some advanced topics. Over the course of a few chapters we
will take you from an MSBuild newbie to an MSBuild expert! For example, we will discuss how
to inject custom steps into the build process, how to create custom tasks, and much more. We
will cover all of the necessary topics that you need to know in order to use MSBuild in all the
great ways that it was intended.

What Is ClickOnce?
For more than a decade now, technology decision makers have implemented business
processes using “the disconnected Web” simply because Web applications are easy to deploy.
If you perform a feature-by-feature comparison of a Web application versus a desktop applica-
tion (such as a Windows Forms application), you’ll be amazed to see what you bypass just to
have something easily deployed (see Table 1).

xvii

Table 1. Web Application vs. Desktop Application

Feature Desktop Application Web Application

Has interactive and stateful user interface? Yes No

Offers offline support? Yes No

Uses desktop resources? Yes No

Is easy to deploy? No Yes

Organizations have repeatedly given up interactive and stateful applications just so they
can easily deploy them. In addition, organizations have repeatedly given up all the benefits of
having access to a workstation’s local resources so they can easily deploy applications. Finally,
organizations have repeatedly given up the benefits of having applications function without
a server connection so they can easily deploy them. You don’t have to do this anymore. Click-
Once, finally, solves the complicated problem of “easily deploying a desktop application” and
gives the desktop back to you.

ClickOnce enables you to deploy Windows Forms applications just like you deploy Web-based
applications. In addition, ClickOnce provides automatic updates and traditional features found
in a Windows Installer, without the disadvantages. For example, the ClickOnce technology can
add entries to the user’s Start menu and provides an icon in Add/Remove Programs for the user
to uninstall the application. It does this without requiring users to be administrators on their
workstation. ClickOnce provides all of this out of the box.

With ClickOnce you get the ease of deployment of a Web application along with the following
additional benefits inherent in a Windows Forms application:

• Web-based installation

• Automatic and configurable updates via a URL

• Installation without administrator privileges (users don’t have to be admins to install
ClickOnce applications)

• Automatic rollback facilities and traditional desktop installations (such as a menu item
under the user’s Start menu)

These features, as a whole, have not been available to thick client applications in the past.
With ClickOnce, organizations can return to offering dynamic applications that interact with
the user’s desktop (for example, with Microsoft Office, a printer, a network, and so on) while
providing easy installation and automatic updates.

Who Should Read This Book?
This book was written for developers and deployment engineers working with .NET 2.0 on the
Windows platform. Developers will benefit from reading this book because build and deploy-
ment are fundamental aspects of writing and testing software. Deployment engineers will
benefit from reading this book because ClickOnce is now the recommended deployment model
for Windows Forms applications and because MSBuild is now the unified build engine for the
Windows platform.

■INTRODUCTIONxviii

What’s in This Book?
This book covers build and deployment using MSBuild and ClickOnce. The book is broken up
into two parts; the first part (Chapters 2–5) covers MSBuild, and the second part (Chapters 6–9)
covers ClickOnce. Here is a breakdown of each chapter:

Chapter 1, “Deployment Prerequisites”: Most large organizations have a team dedicated to
build and deployment. Individuals on a team like this are not developers. In this chapter,
we’ll assume you are not a developer and give you the proper background required to do
build and deployment. We’ll talk about .NET, application architecture, and various types
of applications. The goal of this chapter is to help you to understand what you can expect
to build and deploy.

Chapter 2, “The Unified Build Engine: MSBuild”: In previous versions of Visual Studio, the
build process was mostly a black box; because of this, performing customizations to the
build process was not very easy. With the new versions of Visual Studio and the .NET
Framework, the build process is fully exposed and documented. It is easy to fine-tune the
steps that will be followed when your projects are built. MSBuild is an XML-based build
system; in this chapter, we’ll introduce MSBuild and its fundamental concepts.

Chapter 3, “MSBuild: By Example”: In Chapter 2, we’ll outline the fundamentals of MSBuild.
Like with many other technologies, it is easier to get a feel for MSBuild when you see it in
use in different scenarios. The aim of this chapter is to provide real examples that will provide
a concrete foundation to your MSBuild knowledge. Topics vary from how to use MSBuild
item metadata to the difference between the @ syntax and the % notation.

Chapter 4, “Extending MSBuild”: MSBuild is a system with extensibility as a focal point
from its conception. Two aspects that MSBuild provides are flexible and powerful exten-
sions: custom tasks and custom loggers. In this chapter, we present a real-world custom
task from the ground up. This task and its accompanying targets file are responsible for
executing any NUnit tasks that are contained in the built assemblies. As a sample of
a real-world logger, we’ll show how to create a custom XML logger.

Chapter 5, “Introducing Team Foundation Server and Team Build: With this version of
Visual Studio, Microsoft has made some other tools available. One of these tools is the
Team Foundation Server (TFS). A part of TFS is a new source control management tool.
When using TFS, you can also use Team Build, which is a utility that can create, maintain,
and execute public builds. For enterprise organizations, creating and verifying a public
build is a critical component of projects. With TFS and Team Build, you can achieve this.
In this chapter, we’ll introduce the necessary concepts to use TFS and Team Build to cre-
ate and customize your public build.

Chapter 6, “Deploying Smart Clients with ClickOnce”: This chapter opens the second part
of the book—deploying Windows Forms applications with ClickOnce. This chapter is an
overview of what ClickOnce is. We’ll start by building the case for why ClickOnce is impor-
tant. We’ll talk about some of the technologies that tried to do the same thing but failed.
We’ll give short introductions to how ClickOnce supports automatic updates. We’ll also
cover how to handle the sensitive issue of giving an application the proper privileges to do
what it needs on the client.

■INTRODUCTION xix

Chapter 7, “ClickOnce Updates, Security, and the Bootstrapper”: This chapter tells you
everything you need to know about ClickOnce updates, security, and the generic boot-
strapper. We’ll start by dissecting the deployment and application manifest files. We’ll
then jump into how an application is configured for updates and when and how an appli-
cation is updated in the background. After you understand the details of ClickOnce
updates, we’ll talk about ClickOnce security. Historically, thick client applications that
have a client-side footprint have always been restricted to a security sandbox. This sand-
box either was not configurable at all or was configurable in a way that was not practical.
After reading this chapter, you’ll see how ClickOnce solves this problem in a practical manner.
The last topic we’ll talk about in this chapter concerns getting application prerequisites
deployed with your ClickOnce applications, which will prep you for the next chapter.

Chapter 8, “The ClickOnce Data Directory and Deploying Prerequisites”: Nontrivial business
applications today need a way to store application data. Storing application state is not
something new and is easily accomplished if you have a connection to your database. But
what if your application is a smart client and has to support offline capabilities? In other
words, where do you store application state if you don’t have a connection to your database
on the network? ClickOnce provides the ClickOnce data directory for you to store applica-
tion state. The ClickOnce data directory is something special and is managed as you move
from one version of your application to the next. This chapter talks about the data directory,
offline support, and how to migrate data as your application gets updated. The second
portion of this chapter is about deploying custom prerequisites. Visual Studio 2005 comes
with a short list of popular packages that you can deploy with your application, but what
if you have your own prerequisites that you built or one that is not in the list? How do you
deploy your own prerequisites? This chapter will tell you how to do that.

Chapter 9, “ClickOnce Tools and Scenarios”: This chapter will talk about three tools that
will help in deploying ClickOnce applications and some common ClickOnce scenarios.
The tools discussed include the Bootstrapper Manifest Generator (BMG), the Manifest
Generation and Editing (MAGE) tool, and MSBuild. The BMG is a Windows Forms appli-
cation that provides a user interface for building the package and product manifest files
that are required to deploy a custom prerequisite. The MAGE tool is a Windows Forms
application that helps you build the deployment and application manifest files for your
ClickOnce applications. We’ll also talk about how you can automate a ClickOnce deploy-
ment—of course, you do this using MSBuild tasks. Finally, we’ll present some common
ClickOnce scenarios, covering practical ClickOnce problems and offering possible solutions.

After reading this book, you’ll have a good understanding of the fundamentals of MSBuild
and ClickOnce. You’ll also understand how to use the two technologies to establish a build and
deployment process in your organization.

■INTRODUCTIONxx

1

Deployment Prerequisites

Build and deployment are engineering problems, and in most big organizations, these are
delegated to an entire team. The members of these teams aren’t necessarily developers, yet they
are experts on build and deployment processes and engineering. That is, you do not need to
know how to code or know how something was created to be able to build and/or deploy it. And
you should not have to know this!

Having said that, as a build and deployment engineer, you should have a fundamental
understanding of the various types of applications and application architectures. You should,
for example, know the types of components in a Web application versus a Windows Forms
application. Similarly, you should know the differences between client-server architecture and
n-tier architecture. Why is this important? It is important for a deployment and build engineer
to be familiar with the various types of applications and application architectures for two rea-
sons. The first and obvious reason is that in order to build an application or deploy it, you need
to know what components it contains. For example, with a Web application, it helps to know
it has a configuration file and you may have to modify this file when you write a build script
for it. With a client-server application, it helps to know it has a client-side deployment and
a server-side deployment. Having this knowledge helps you do your job better. The second
important reason is that often deployment engineers have to perform a basic level of testing
after deploying an application. Having some basic knowledge about the type of application
and its architecture can go along way to resolving some fundamental problems.

In this chapter, we will define the various types of applications and briefly describe com-
monly used application architectures. We will also define the .NET Framework and describe
methods of deploying the .NET runtime.

Types of Applications
With the .NET Framework, you can build Windows Forms applications, Web applications,
Web services, smart device applications, Windows services, console applications, and hosted
applications:

Windows Forms applications: Windows Forms applications are applications with a graph-
ical user interface (GUI) front end, and they run on desktops. Examples of this type of
application include Microsoft Word, Microsoft Excel, and so on.

C H A P T E R 1

■ ■ ■

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES2

1. Visual Studio 2005 was not actually written using Windows Forms, although part of it is managed
code. The user interface is an example of a Windows Forms application.

Web applications: Web applications are applications built with ASP.NET. These applica-
tions have a server-side component and a client-side component. The server-side
contains the business logic, and the client-side contains the view (GUI) that is displayed
in a browser. Web applications are accessed via a uniform resource locator (URL)—for
example, http://www.sayedhashimi.com.

Web services: Web services are standards-based systems accessible over a network such
as the Internet. Web services are generally employed to connect disparate systems. Web
services are sometimes called XML Web Services.

Smart device applications: Smart device applications are applications that target mobile
devices (for example, Smartphone devices). Smart device applications are built with the
.NET Compact Framework, a subset of the .NET Framework.

Windows services: Windows services are executables that run in the background. The
special feature of Windows services is that they don’t require an interactive user. That is,
Windows services can run while no one is logged on to the system. An example of a Win-
dows service is a device driver or an application that performs background tasks based
on a timer.

Console applications: Console applications are executables that are run from the Windows
command prompt. Functionally, console applications are similar to Windows Forms applica-
tions; the difference is that console applications don’t have a Windows Forms user interface
and are text oriented.

Hosted applications: Last but not least, you can build hosted applications with the .NET
Framework. Hosted applications are applications that allow the hosting of managed code
inside an application. Hosted applications provide the facility for you to allow your cus-
tomers (clients) to extend your application. Hosted applications are built with something
called Visual Studio Tools for Applications (VSTA). Microsoft also has a variation of VSTA
for the Microsoft Office suite called Visual Studio Tools for the Microsoft Office System
(VSTO). The idea behind VSTO is to leverage the power of Office, Visual Studio, and man-
aged code to build more feature-rich applications. Historically, VSTO came before VSTA;
Microsoft extended the idea in VSTA to allow third parties to benefit from managed code
extensibility in its own products.

That’s the quick, five-minute tour. We’ll now cover these types of applications individually
so you can better understand them and the components they contain.

Windows Forms (Smart Client) Applications
Windows Forms applications are desktop applications that have rich user interfaces. For exam-
ple, the Visual Studio integrated development environment (IDE) is an example of a Windows
Forms application.1 Windows Forms applications are built using the .NET Framework class
libraries and have the following features:

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES 3

Figure 1-1. Features of a thick2 client, a thin client, and a smart client

• They possess a dynamic user interface with rich controls (for example, DataGrids).

• Users generally have the ability to do sophisticated actions quickly (for example, drag-
ging and dropping).

• The application is installed on desktops and thus uses desktop resources. For example,
the application can use the printer, the hard drive, and so on. The application can also
communicate with running applications on the machine or spawn new processes and
threads.

Recently, Microsoft decided to label Windows Forms applications as smart clients (see
Figure 1-1).

2. Thick client, rich client, and fat client are synonyms.

Smart client applications are Windows Forms applications with several additional fea-
tures to those listed previously. For instance, a smart client has the following features:

• It supports offline capabilities. That is, the application doesn’t require a network con-
nection and is intelligent about detecting network connectivity automatically. So, for
example, if you run a smart client application on your laptop and decide to go talk to
a client in an area where you can’t access your network (or the Internet), the smart client
will still work even though your database is not accessible.

• It is easy to deploy and update.

Figure 1-2. New Windows Forms application in Visual Studio 2005

In Visual Studio 2005, you create Windows Forms/smart client applications by choosing
Windows Application in the New Project dialog box, under Visual C# or Visual Basic (see
Figure 1-2).

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES4

3. You can also embed resource files, such as images, data files, and so on, within assemblies.

4. Strictly speaking, putting dependent assemblies within the bin directory is a Visual Studio convention.
The common language runtime (CLR) assembly loader uses a concept known as probing to locate
assemblies. The bin directory happens to be one of the directories that is “probed” when the CLR
looks to load an assembly. For more details about this, see http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/cpguide/html/cpconassemblies.asp.

Windows Forms applications comprise an executable, zero or more dependent assem-
blies, resource files,3 and an application configuration file. The executable has an .exe
extension, and the dependent assemblies typically have a .dll extension. In .NET, these
DLLs are called assemblies. The dependent assemblies are generally placed in a folder
named bin or directly next to the executable.4 Often the application will also use shared

Figure 1-3. Typical Windows Forms deployment

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES 5

5. ClickOnce is new deployment technology built into the .NET runtime 1.0.

You can deploy Windows Forms applications using ClickOnce.5 You can use ClickOnce to
deploy a rich client application using a Web-based deployment model. That is, you can deploy
Windows Forms applications over the Web.

Other deployment options exist, such as Windows Installer (MSI), but ClickOnce is the
new recommended method of deploying Windows Forms applications. Visual Studio 2005 has
built-in support for deploying Windows Forms applications. Figure 1-4 shows the Publish dia-
log box used to configure the deployment of a Windows Forms application. We will talk about
this in great detail in later chapters.

assemblies from the global assembly cache (GAC). The GAC contains assemblies that are
shared among the applications installed on the machine. You can see the contents of the
GAC by going to %windir%\assembly.

A deployment of a Windows Forms application looks like Figure 1-3.

Figure 1-4. The deployment of a smart client application using Visual Studio 2005

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES6

6. ASP.NET requires Web applications to have a bin folder; with Windows Forms applications, the bin
folder is just one place where the probing process looks for assemblies.

Web Applications
A Web application is an application that is targeted to render in a browser. With the .NET
Framework, you build Web applications using ASP.NET. To build a new Web application using
Visual Studio 2005, you choose File ➤ New ➤ Web Site.

Figure 1-5 shows the New Web Site dialog box in Visual Studio 2005. An ASP.NET applica-
tion consists of dynamic pages, static pages, configuration files, resources, and dependent
assemblies. From a deployment perspective, it is important to know that a Web application’s
dependent assemblies are located in a folder named bin.6 Moreover, the configuration of
a Web application is stored in a file called web.config. The web.config file is an Extensible
Markup Language (XML) file. Application authors generally put environment-specific settings
(for example, a database connection string) in this file. Therefore, during deployment, the file
will likely need to be modified to reflect the environment in which the application is being
deployed. In the past, this task was either done by hand or done by an automated script. With
Visual Studio 2005, you can use a Web-based administration console to modify the web.config
file of an application (see Figure 1-6).

Figure 1-5. New Web Site dialog box in Visual Studio 2005

Figure 1-6. Web Site Administration Tool console

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES 7

Figure 1-7. ASP.NET configuration via the Solution Explorer in Visual Studio 2005

Figure 1-8. A typical deployment of a Web application

You can access the administration console from the Website ➤ ASP.NET Configuration
menu item in Visual Studio 2005. As shown in Figure 1-6, the administration console is a Web-
based tool. From the URL, you can conclude that when Visual Studio was installed, it created
an application called asp.netwebadminfiles whose default.aspx file takes the path to a Web
application. With this path, the application knows which application’s configuration file to
display in the administration console. Note that you can also get to the administration console
from Visual Studio 2005 by clicking the ASP.NET Configuration button in the Solution Explorer
(see Figure 1-7).

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES8

A typical deployment of a Web application looks like Figure 1-8.

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES 9

Web applications are deployed simply by copying files to the Web server.7 Visual Studio
2005 has a built-in Web deployment tool that helps with this (see Figure 1-9). You can access
this tool via Web Site ➤ Copy Web Site menu item.

7. This is commonly called xcopy deployment.

8. You can also host Web services outside of IIS. For example, you can host Web services outside of IIS
using Web Services Enhancements (WSE).

With the deployment tool in Visual Studio 2005, you can deploy your Web applications to
a Web server, to a File Transfer Protocol (FTP) site, or to a folder somewhere.

Web Services
Web services in .NET have an .asmx file extension. The .asmx file provides the means for clients
to call Web services over Hypertext Transfer Protocol (HTTP). The actual Web service imple-
mentation is embedded within an assembly. On a Windows platform, Web services are typically
hosted under Internet Information Services (IIS).8 Therefore, from a deployment perspective,
deploying Web services is no different than deploying Web applications. A Web service, in fact,
can reside by itself under its own Web application, or it can reside under a Web application that
has the usual ASPX and HTML files. Because Web services are packaged as part of a Web appli-
cation, Web services have a web.config file that they use for storing and retrieving application
configuration.

Figure 1-9. Web site deployment tool in Visual Studio 2005

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES10

Figure 1-10. New smart device application in Visual Studio 2005

Smart Device Applications
Smart device applications run on smart devices. Visual Studio 2005 has project templates that
target three types of smart devices: Pocket PC 2003, Smartphone 2003, and Windows CE 5.0. The
Pocket PC and Smartphone projects target these specific devices; the Windows CE project type
does not target any specific device. (In other words, it does not reference any device-specific
functionality.) Figure 1-10 shows the New Project dialog box for smart device applications. The
dialog box allows you to create graphical applications, console applications, and support assem-
blies that all target smart devices.

Smart device applications are built on top of the .NET Compact Framework (.NET CF).
The .NET CF is a subset of the .NET Framework. This means the .NET CF doesn’t have all the
functionality that is available in the .NET Framework.

You can build Web applications, console applications, Windows Forms applications,
and so on, that target devices that are not smart devices (that is, desktops). Similarly, you
can build a Web application or a Windows Forms application that targets smart devices.
Therefore, deploying Web applications that target smart devices is no different because
Web pages are still deployed to an actual server and rendered to the smart device. Note that
you cannot use a smart device as a Web server, however. With Windows Forms and console
applications, you have to install the applications on the smart device. This turns out to be
different from what you do for desktop applications. That is, you use ClickOnce to deploy
Windows Forms applications to desktops. You don’t, however, have this luxury to deploy to
smart devices. Instead, you have to package these applications using CAB files.

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES 11

Windows Services
Windows services are executables that run in the background and have no user interface. You
can create a Windows Service using Visual Studio 2005 by selecting Windows Service in the
New Project dialog box (see Figure 1-11). Windows services are supported on Windows NT,
Windows 2000, Windows XP, Windows Server 2003, and future versions of the operating sys-
tem. These versions of Windows are multiuser systems. This means multiple users can be
logged on to the system simultaneously. In addition, generally there is no one logged on to
the main console (the server itself). Therefore, having a UI for these services is a bit useless.

■Note You can manage and configure Windows services through a console called Service Control
Manager (SCM).9

9. Refer to http://www.microsoft.com/technet/prodtechnol/windows2000serv/howto/mmcsteps.mspx for
more details.

Having said that, you can still have a service that has a UI. For almost all cases, Windows
services don’t have UIs, but Windows still allows you to have one if you need one. Services that
have a UI need a special flag enabled. You can set the special flag by right-clicking the service
from the Services list in the Microsoft Management Console (MMC) and choosing Properties
➤ Log On tab (see Figure 1-12). Then check the Allow Service to Interact with Desktop box.

Figure 1-11. New Windows service project and service configuration

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES12

Figure 1-12. Configuring a Windows service to interact with the desktop10

10. This feature is likely to be dropped in future versions of Windows.

11. For a complete list of events, see http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vbcon/html/vbconserviceapplicationprogrammingarchitecture.asp.

12. You can view the services on Windows XP by right-clicking My Computer and then selecting Manage.
From there, choose Services under Services and Applications.

Windows services comprise an executable, zero or more dependent assemblies, resources,
and a configuration file. The executable contains service-level event methods (for example,
OnStart), which are fired when a service is started, stopped, and so on, through the SCM (see
Figure 1-13).11

Figure 1-13. Start-up configuration of a Windows service12

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES 13

Console Applications
Console applications are text-oriented applications that run from the Windows command
prompt. You can create a console application by selecting Console Application in the New
Project dialog box (see Figure 1-14).

Similar to Windows Forms applications, console applications comprise an executable,
dependent assemblies (DLLs), resource files, and an application configuration file. The exe-
cutable generally has zero or more dependent assemblies. The dependent assemblies are
placed in a folder named bin, which is directly next to the application’s executable. The appli-
cation configuration file is placed next to the application executable and uses the following
naming convention: executableAssemblyName.exe.config. Note that this configuration file
generally contains environment-specific settings, among other things. Therefore, this con-
figuration file is something you have to be aware of and know how to modify.

Hosted Applications
Hosted applications “host” a scripting engine within the application to provide an extensibil-
ity feature. In effect, by hosting a scripting engine, they provide a means for customers to
extend the functionality of the application to better meet their needs. In the past, organiza-
tions used Windows Script or Visual Basic for Applications (VBA) as a scripting engine. With
.NET, you use VSTA instead. VSTA is an improvement over the other technologies because it
relies on, and benefits from, the use of managed code.

Hosted applications are no different from the other application types. There is nothing
more special about how you deploy an application just because it’s hosting a scripting engine.

Figure 1-14. New console applications in the New Project dialog box

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES14

Figure 1-15. Layers within a client-server architecture

Application Architectures
It is important for a build and deployment engineer to have a foundational understanding of
some of the common application architectures in order to effectively do their job. We will now
discuss a few of the common application architectures in use today. Specifically, we will discuss
the client-server, n-tier, and service-oriented architectures. We’ll start with client-server.

Client-Server Architecture
Mainframe architecture was popular in the late 70s and most of the 80s. With mainframes,
users sat in front of a terminal, and as they typed, keystrokes were sent to the host for process-
ing. This architecture had some limitations: it didn’t support GUIs, and users couldn’t access
multiple databases from geographically remote places. These limitations popularized the
client-server architecture.

Figure 1-15 shows that within a client-server architecture, applications are divided into
three layers: the presentation layer, the business logic layer (BLL), and the data access layer
(DAL). Each layer has specific responsibilities. The presentation layer is responsible for man-
aging the user interface interaction with the user, the business logic layer provides business
services, and the data layer handles storing and retrieving data. The presentation layer usually
resides on the client, and the business logic layer and data layer sit on the server(s). This, how-
ever, is not always true. To differentiate this, you need to understand the differences between
thin, thick, and smart clients.

Thin Client
An ASP.NET Web application is an example of a thin client. A thin client application renders
the view to the client, and almost all the processing takes place on the server(s). In the con-
text of a client-server architecture, the presentation is rendered to the client (for example,
Hypertext Markup Language [HTML] to a browser), and both the business layer and the
data layer are distributed across one or more servers. Thin clients are always rendered in
the browser and are easy to develop, update, and maintain. They do, however, have several
disadvantages: subpar user experiences, compelling security restrictions, and a network
connection requirement (in other words, no offline capability). This type of application,
however, has been a popular choice in the past decade because it is easy to deploy and can
reach users at a global level. Although the disadvantages seem to outweigh the advantages
here, quite a bit of improvements have been made to thin client technologies over the past

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES 15

few years. Specifically, the release of .NET introduced ASP.NET, and future improvements
are on the way (such as Atlas13).

Thick Client
A thick client is the opposite of a thin client. Sometimes this type of application houses all three
layers on the client desktop. Thick clients are dynamic and offer users a rich experience. The dis-
advantages to this type of application include more difficult deployments and poor maintenance
and versioning options. Note that the difficulties in deployment and updates led technology deci-
sion makers to choose thin clients in the past decade. The tables are turning, however. With the
release of Visual Studio 2005, you have a technology that allows you to deploy rich client applica-
tions using a thin client deployment model (ClickOnce).

Smart Client
Smart clients offer the benefits of both a thin client and a thick client (refer to Figure 1-1).
Essentially, if you take all of the advantages of having a thin client and combine them with
the benefits of a thick client while throwing away their disadvantages, you end up with
a smart client.

N-Tier Architecture
In the previous discussion, we talked about the three layers of an application. To reiterate,
an application has a presentation layer, a business logic layer, and a data access layer (refer to
Figure 1-15). Generally, these layers are separate and run on different machines. For example,
you usually see the presentation on a Web server and the business logic and data access layers
on an application server. But you sometimes have applications where all three layers are bun-
dled together. When this is the case, you have a one-tier architecture. Similarly, when the
presentation is separate from the business logic and data access layers, you have a two-tier
architecture. When each of the layers lies on different machines, you have a three-tier archi-
tecture (see Figure 1-16).

13. Find out more about the Atlas project at http://www.asp.net/default.aspx?tabindex=9&tabid=47.

For scalability, performance, and maintainability reasons, an application is broken up
into layers. This allows what’s known as n-tier architecture. With n-tier architecture, you can

Figure 1-16. Three-tier architecture

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES16

Figure 1-17. N-tier architecture

have the business logic and data access logic running on many machines, as shown in
Figure 1-17. In fact, all three layers can be spread across multiple machines. It’s not uncom-
mon to use Web farms, load balancers, and database clusters to achieve optimal performance.

14. Web services should implement the “real-world” services provided by the organization.

Service-Oriented Architecture
Service-oriented architecture (SOA) has become a buzzword of late. Although the concepts
behind SOA have been around for more than a decade now, SOA has gained extreme popular-
ity lately because of Web services. The fundamental idea behind SOA is that organizations have
a host of services that they provide, and we should try to align Web services to these real-world
services.14 Doing so will then mitigate the risk when changes are required. Moreover, the Web
services that align to the real-world services are built upon XML-based standards, which means
you have cross-platform interoperability. Figure 1-18 shows a typical SOA.

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES 17

Strategies for Deploying the .NET Framework
Applications built with the .NET Framework require the .NET redistributable package (the
.NET runtime) in order to run. As it stands now, the .NET runtime is not distributed with
the supported versions of Windows operating systems. This means you are responsible for
getting the .NET runtime to your clients. Depending on your deployment method, you
either package the .NET redistributable with your deployment or require that users have
the .NET runtime prior to running your installer. If you are going to require that your
clients already have the.NET runtime installed, you can have them download it from
http://msdn.microsoft.com/netframework/downloads. The download page provides a link
to download the .NET redistributable software development kit (SDK) along with the ser-
vice packs. In an enterprise environment, you also have other options. For example, large
organizations often use Microsoft Systems Management Server (SMS) to handle the auto-
matic distribution of the .NET runtime (among others deployments).

Where Do You Need the .NET Runtime?
We started this chapter by talking about the types of applications you can expect to deploy and
the architectures of these applications. We talked about the layered client-server application

Figure 1-18. A service-oriented architecture

Figure 1-19. Typical smart client and .NET runtime requirements

Figure 1-20. Typical deployment of a thin client

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES18

and how these layers are generally distributed over several machines. Now we will discuss
where you need to install the .NET runtime. We’ll explain the typical deployments of a thin
client and a smart client, since these are the types of applications you can expect to see.

Typical Deployment of a Smart Client
Figure 1-19 shows a typical three-tier deployment of a smart client and where the .NET run-
time is required.

With a traditional three-tier deployment of a smart client, the presentation is implemented
using Windows Forms. This requires that the .NET runtime is installed wherever the presentation
layer is going to run, which is a user’s desktop. The business logic usually resides on an application
server and can be implemented using COM+ components. Thus, the machine where the business
logic is going to run requires the .NET runtime. The data access layer can be on the same machine
where the business logic is deployed; however, it’s not uncommon to see the data access layer on
a separate machine. The data access layer is implemented using ADO.NET, so you need to have
the .NET runtime installed on this machine as well.

Typical Deployment of a Thin Client
Figure 1-20 shows a typical deployment of a thin client application.

CHAPTER 1 ■ DEPLOYMENT PREREQUISITES 19

15. You can host Windows Forms components within a browser, which requires the .NET runtime on the
client.

With a thin client, the presentation layer serves HTML to clients over HTTP. The presenta-
tion is usually implemented using ASP.NET. This means you need to have the .NET runtime on
the Web server. What about the client’s browser that receives HTML? Since the client is receiv-
ing HTML, it does not require the .NET runtime15 (which is a big advantage of building thin
clients).

The business logic and data access layers both require the .NET runtime if they are imple-
mented using managed code.

Summary
In this chapter, we talked about the various types of applications and application architectures.
It is important for build and deployment engineers to be familiar with what they are going to
be building and deploying. This knowledge comes in handy after you do a build or a deployment
and have to verify that it was successful.

We also talked about distributing the .NET runtime. In the next chapter, we will start the
multichapter coverage of Microsoft’s new build engine (MSBuild).

21

C H A P T E R 2

■ ■ ■

The Unified Build Engine:
MSBuild

Software systems have moved from stand-alone applications installed on single machines
to large, distributed applications hosted over a network of machines. To create executables of
stand-alone applications, you opened a command prompt and executed a few commands to
convert the source code into executables. To deploy these applications, you took the generated
executables and stored them on floppy disks and “sneakernetted” the application to the clients.
The distributed systems of today are considerably more complex; they are much larger and so
are their user bases. To build and deploy these systems, you must use predefined processes,
along with automated build and deployment tools, to ensure reliability and repeatability. For
example, most organizations define what are known as pipelines, and applications are built
and deployed automatically to a pipeline for testing and verification. An application starts in
an integration environment, then moves to a staging environment, and finally moves to produc-
tion. At each point, tests are automatically executed in an attempt to ensure quality.

At the heart of a build and deployment process is a build and release tool. That is, one tool
is responsible for getting, building, and then deploying these applications automatically. Moreover,
it is the same tool that is used to migrate the applications from one environment (for example,
staging) to another (for example, production).

Just as software development tools have evolved, so have the tools that are used to build
and deploy them. Why do you need build tools? Why aren’t scripts or batch files sufficient?
Well, build tools are a necessary component of application development now because the
steps for building software have increased in complexity. Previously, builds required simpler
steps, such as copying and moving files, in order to perform the build. Now many applications
are using third-party libraries and require more complex tasks, such as file signing and incre-
mental building (more on this in Chapter 4). This increase in complexity has given rise to the
need for build-specific tools. In other words, people started by building their software, some-
what manually, and realized they needed a repeatable process. Tools such as Make, NMake,
Ant/NAnt, and Jam (among others) can create a repeatable process.

In this chapter, we will discuss MSBuild, but we will also highlight some of the most popular
build tools and build systems used in the recent past. Note that a build tool is a component or
application whose sole responsibility is to take source code and produce binaries (for example,

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD22

machine code, Java bytecode, Microsoft Intermediate Language [MSIL], and so on). A build
system is a collection of build-related tools that together offer facilities to build, deploy, config-
ure, and test solutions. Build tools and build systems are often packaged as part of popular
software development systems.

Introducing Build Tools and Systems
In the following sections, we will describe some of the popular build tools and build systems.

Make-Style Build Tools
Several build tools are extensions of the original BSD Make. The most popular of the extensions
include GNU Make, NMake, OPus Make, Jam, and Cook. With all of these tools, you place a file,
usually called a makefile, near the source code that describes what needs to be built. To do
a build, users usually enter make in a Unix shell or Windows Command window.

GNU Make
GNU Make is probably the most popular build tool on the Unix platform. GNU Make obtained
its popularity because of the vast number of extensions it made to BSD Make. GNU Make is
a part of the GNU toolset and, thus, is still alive and supported. This build tool is distributed
under the GNU open source license.

NMake
NMake was originally developed by AT&T Laboratories as an open source project. Recently it
has been extended by Lucent Technologies and is packaged as part of a commercial product
called Lucent nmake Product Builder. Microsoft also has a version it calls Microsoft Program
Maintenance Utility (NMAKE.EXE). The versions produced by AT&T and Lucent are compatible
with the original BSD Make; the version produced by Microsoft is not.

OPus Make
OPus Make was a popular build tool in the 90s. This tool became popular for its multiplatform
support and rather lengthy list of features, including support for logical operators in conditional
expressions, regular expression substitutions, a rich set of directives, and more.

Jam and Cook
GNU Make, NMake, and OPus Make were all extensions of Make but use the same style used
by the original BSD Make. For example, they all relied on the makefile and added features (such
as macros). Jam and Cook are variants of Make that don’t rely on the makefile but use another
variation of a text file to define what needs to be built. The interesting feature of these two
products is that they support parallel builds while avoiding recursion.

GBS
The GNU Build System (GBS) is a suite of build tools that, together, provide facilities to build,
configure, and release software systems. GBS is popular in the open source community
because it provides a feature that places an abstraction layer over the build platform. GBS is
mostly used within the open source community.

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD 23

CMake and QMake
Cross Platform Make (CMake) and Qtopia Build System (QMake) are build systems, not build
tools, that decided to piggyback on the popularity of Make. These build systems have a lot of
similarities in that they both market their portability features and support various build tools.
CMake offers a GUI and a command-line interface; QMake supports only a command-line
interface.

Ant/NAnt
The build tools described in the previous sections all use a build description file (for example,
a makefile). Most rely on either cryptic commands or full-blown programming languages to
describe what needs to be built. The problem with describing builds using commands and/or
languages is obviously that the builds are difficult to create and maintain.

Ant is a cross-platform build tool popular in the Java community. Ant discarded the idea
of using commands or programming languages to describe builds and instead uses XML-based
configuration files. Build steps are described using something called tasks, which are imple-
mented with the Java programming language (rather than by writing scripts) and are grouped
under a target. This is an example Ant file:

<project>
<target name="compile">

<mkdir dir="build/classes"/>
<javac srcdir="src" destdir="build/classes"/>

</target>

<target name="jar">
<mkdir dir="build/jar"/>
<jar destfile="build/jar/HelloWorld.jar" basedir="build/classes">

<manifest>
<attribute name="Main-Class" value="sayed.HelloWorld"/>

</manifest>
</jar>

</target>

<target name="run">
<java jar="build/jar/HelloWorld.jar" fork="true"/>

</target>
</project>

To perform a build using Ant, you place a file named build.xml next to your source tree
and enter ant at the command prompt. Ant is command-line driven; however, several popular
extensions offer GUIs for Ant.

As far as NAnt goes, NAnt is a port of Ant to the .NET platform. NAnt maintains the same
concepts of Ant. That is, NAnt also uses an XML-based build file and defines features such as
targets, tasks, and so on.

We’ll now begin discussing the next-generation build tool: MSBuild.

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD24

Figure 2-1. Sample Windows application

Introducing MSBuild
MSBuild is Microsoft’s solution to the automated build problem. MSBuild allows you to per-
form all the necessary steps to properly build your .NET applications. MSBuild provides this
functionality transparently.

In prior versions of Visual Studio, the build process was, for the most part, hidden to the
user. You could, for example, supplement your build with pre- and post-events, but you could
not change how the build occurred. In Visual Studio 2005, you have this feature! Visual Studio
2005 uses MSBuild to build your solutions. Microsoft has exposed and defined this build process
as part of the MSBuild schema.

Visual Studio uses your project file as input to MSBuild. In this example, we will show how
to create a simple project file using Visual Studio. You can use this file to understand some of
the key elements of MSBuild. It will also serve as a point of extension to explore some of the
other features of MSBuild. Although MSBuild supports many application types, we will show
how to create a simple Windows Forms application.

To create this simple project, follow these steps:

1. Start Visual Studio, and create a new C# Windows application named MSBuild1.

2. Accept the defaults, and click OK.

3. In the Form Designer, drag and drop a new label onto the form.

4. Set the text of the label to MSBuild demo.

The form should look like Figure 2-1.

Open the project file (MSBuild1.csproj) in your favorite XML or text editor. You’ll notice that
the root element is the Project element. Beneath this you’ll see three element types in this file:

• PropertyGroup

• ItemGroup

• Import

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD 25

A few other elements could be present at this level, but we will discuss those elements as
you get to them. You’ll see an element that is commented out as well: the Target element. We
will discuss this important piece of the MSBuild file later in this chapter. The PropertyGroup
element is a container for defined properties. Similarly, the ItemGroup element is a container
for defined items. The Import tag allows you to import other MSBuild files into the current
project. We will examine how this will affect your files later in this chapter.

An MSBuild file has four main elements: properties, items, targets, and tasks. A property
defines a value associated with a name. Simply put, it is a key/value pair. In this project file,
you’ll find many properties defined:

<DebugSymbols>true</DebugSymbols>
<DebugType>full</DebugType>
<Optimize>false</Optimize>
<OutputPath>bin\Debug\</OutputPath>

You’ll find these defined under the <PropertyGroup Condition=" '$(Configuration)
|$(Platform)' == 'Debug|AnyCPU' "> tag. You can change these values directly from Visual
Studio by using the Configuration drop-down list.

Items are another crucial part of the MSBuild project file. When performing a build, many
steps must reference a file or a set of files. In MSBuild this is usually accomplished through
items. An item is a named reference to a file or to many files. These items contain associated
metadata, such as the full path or filename. Throughout the discussion of MSBuild, we will
discuss items in more depth.

A target is a container for related tasks that will be executed sequentially. Besides con-
taining tasks, a target can be given a set of dependent targets and a list of inputs and outputs.
Incremental building, which is discussed in more detail in Chapter 4, is the process of skipping
unnecessary steps. This is driven completely by the associated input and output files for a target.
When you invoke MSBuild, you must specify a target that is to be executed; after that, MSBuild
will perform a dependency analysis to determine exactly what other targets need to be executed
as well.

A task is a unit of work in MSBuild. For example, Copy or LocateRequiredAssemblies could
be defined as a task. In this sample, you will not find any tasks defined. This is because this
sample utilizes predefined tasks to complete the build. (We will cover the predefined task later
in this chapter in the “Predefined Tasks” section.) Tasks must be located within a Target element.
A Target element consists of a group of related tasks that are executed sequentially. Possible
targets are PrepareForDeployment and CopyToServers.

As mentioned, this project uses predefined tasks to accomplish the build. You may be wonder-
ing where these tasks are actually defined. To answer that question, scroll toward the bottom of
the project file, and you’ll find the following declaration: <Import Project="$(MSBuildBinPath)\
Microsoft.CSharp.targets" />. This import statement is using a property, MSBuildBinPath, to
specify where to find the Microsoft.CSharp.targets file, which contains many predefined
tasks. The Microsoft.CSharp.targets file is located in the %windir%\Microsoft.NET\Framework\
v2.0.50727\ directory. By using the $() syntax, the property MSBuildBinPath is evaluated, and
its value replaces the reference. This property is a reserved property whose value is the location
of msbuild.exe. A few other reserved properties exist, which we will discuss in the next section.

Properties
As stated, a property is a simple key/value pair. Let’s examine another property definition
from the MSBuild.csproj file: <RootNamespace>MSBuild1</RootNamespace>. This property is
defined in the first PropertyGroup element. If you needed to reference this property some-
where else in the MSBuild file, you would simply use the $() notation. For instance, you would
use $(RootNamespace).

Refer to the property declaration again: <PropertyGroup Condition=" '$(Configuration)
|$(Platform)' == 'Debug|AnyCPU' ">. Notice the Condition attribute; every MSBuild element
has an optional Condition attribute. If this condition evaluates to true, then the element is
processed; otherwise, it is ignored. Table 2-1 summarizes the basic condition syntax.

Table 2-1. Property Conditions

Symbol Description

== Checks for equality; returns true if both have the same value.

!= Checks for inequality; returns true if both don’t have the same value.

Exists Checks for existence of a file. You provide the file path as an argument, such as in
Exists(MSBuildDemo.txt). This will return true if MSBuildDemo.txt is present.

!Exists Checks for the nonexistence of a file. You use this condition in a similar manner as
the Exists condition.

The <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
property will not be executed unless the Configuration property has not already been set. In
the next section, you’ll see how you can use these properties in tasks that you create. You may
find a number of reserved properties helpful in your MSBuild project. Table 2-2 lists their names,
their descriptions, and the values that are returned for the project you will start shortly. In the
“Targets” section, you will create a target to print the values for these properties.

Table 2-2. Reserved Properties

Name Description Example

MSBuildBinPath Full path of the .NET %windir%\Microsoft.NET\
Framework MSBuild Framework\v2.0.50727
bin directory.

MSBuildExtensionsPath Full path to the MSBuild C:\Program Files\MSBuild
folder located in the
Program Files directory.
This is a nice location to
keep other MSBuild files
that the current
file references.

MSBuildProjectDefaultTargets The value for the Build
DefaultTargets attribute that
is in the Project element.

MSBuildProjectDirectory Full path to the location C:\MSBuild\MSBuild1\MSBuild1
of project file.

MSBuildProjectExtension Extension of the project .csproj
filename, including the
initial dot.

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD26

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD 27

Name Description Example

MSBuildProjectFile Filename of the project file, MSBuild1.csproj
including extension.

MSBuildProjectFullPath Full path to the project file, C:\MSBuild\MSBuild1\
including the filename. MSBuild1\MSBuild1.csproj

MSBuildProjectName Name of the MSBuild MSBuild1
project file, excluding the
file extension.

Targets
As mentioned, targets are containers for related tasks that will be executed sequentially. Some
example targets are Build, Deploy, and SetupEnvironment. Let’s examine the parts of a target:

<Target
Name="SampleTarget"
Inputs="SampleInput"
Outputs="SampleOutput"
DependsOnTargets="DependentTarget"

>
<Message Text="SampleTarget executed, SampleInput: @(SampleInput)" />

</Target>
<Target Name="DependentTarget">

<Message Text="DependentTarget executed" />
</Target>

Each target has a Name attribute that is required to be a nonempty string. This name is how
you will refer to the target. Additionally, a target can have inputs; if you declare a target to have
inputs, then it must have outputs as well. The purpose of the inputs/outputs is to facilitate
incremental builds. That is, if a portion of your build does not need to be reexecuted, then it
will not be. In a build process, if you had a Target defined as CopyResources, it may take as an
input a list of files containing the location on disk of all external resources. The corresponding
output may be the desired location of these resources. When MSBuild encounters this target,
it will compare the time stamps of these files to each other. If it is not necessary to reexecute
that CopyResources target, then it will be skipped.

The DependsOnTarget parameter is a list of targets, separated by semicolons, that are required
to be run before this target executes. It is important to note at this time that during a build
a target will be executed only once. So, if you had two targets that both depended on a com-
mon target, that one target will not be executed twice but only once. Now you will examine
how you can get started executing some targets that employ some of the predefined tasks.

Executing and Creating Targets
In this section, we will discuss the process involved in executing and creating targets. You can
utilize many predefined targets in your builds. (Many predefined tasks also exist; we will wait
to cover those in the “Predefined Tasks” section.) To emphasize the detachment of MSBuild
from Visual Studio, we will be executing the targets strictly from the command line. The first
step you’ll want to perform is to open the previously created project file in your favorite text
editor. Then, open the Visual Studio 2005 command prompt from the Start menu. From the

Figure 2-2. Output from msbuild.exe on the default target

command prompt, navigate to the directory in which your MSBuild1.csproj file is located.
(Note that MSBuild is also capable of processing solution files, despite that solutions files are
not in MSBuild format.) From there, execute the following command: >msbuild. This will exe-
cute the default target on the only project file residing in that directory. Your output should
look something like Figure 2-2.

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD28

You specify the default target in the root Project element of the project file. In this case, you
have <Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/
msbuild/2003">. If you invoke MSBuild on this project file without specifying the target, then
the Build project will be executed. This target is a predefined target and is not included in your
project file. Actually, no targets are defined in this file. This file has an import statement that
imports Microsoft.CSharp.targets, and that file imports Microsoft.Common.targets. These
two files define many targets, and these are the predefined targets. We will discuss this in more
detail in the “Predefined Targets” section.

Now let’s inject the two targets discussed earlier into this project file. You can place them
anywhere in the file as long as they are defined as child elements of the Project tag. As
a reminder, the two targets are as follows:

<Target
Name="SampleTarget"
Inputs="SampleInput"
Outputs="SampleOutput"
DependsOnTargets="DependentTarget"

>
<Message Text="SampleTarget executed, SampleInput: @(SampleInput) " />

</Target>
<Target Name="DependentTarget">

<Message Text="DependentTarget executed" />
</Target>

Figure 2-3. Output from the execution of SampleTarget

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD 29

At this point, save this file as MSBuild1_rev2.csproj so you have a backup of the project
file in the same directory. The previous example executed the only project in the directory. If
two or more project files exist, then you must specify which one to execute. To do this, you can
supply the name of the project to build as a command-line parameter. To build this project,
execute the following command: >msbuild MSBuild1_rev2.csproj. Following this, you may see
similar output as you did when you built the previous project, or you will see that many targets
were skipped. This depends on whether your source files have changed since your last build.
Skipping up-to-date targets is called incremental building and is a core aspect of MSBuild; we
will discuss this in the “Predefined Targets” section and in more depth in Chapter 4. If you’d like
to see it build again, you can invoke >msbuild MSBuild1_rev2.csproj /t:Clean;build. This will
clean out the previously built files and then build the project. Notice that the target names are
case-insensitive. To execute the target, you simply execute >msbuild MSBuild1_rev2.csproj
/t:SampleTarget. Figure 2-3 shows the output.

Now that you have started specifying some parameters for msbuild.exe, you may be inter-
ested in what other options are available. Table 2-3 summarizes those options.

Table 2-3. msbuild.exe Command-Line Parameters

Switch Short Description

/help /? Displays usage for msbuild.exe.

/nologo Inhibits the copyright message when msbuild.exe
is executed.

/version /ver Displays the version of msbuild.exe.

@file Allows you to pass command-line parameters to
msbuild.exe from the file specified.

/noautoresponse /noautorsp Allows you to specify to not automatically include
the msbuild.rsp file. This file can specify command-
line arguments for MSBuild. If it is present, it will
be consumed, unless you set this flag. If you have
long command-line arguments, this is the suggested
manner to pass them to MSBuild.

Continued

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD30

Figure 2-4. msbuild.exe output for the target SampleTarget;DependsAgain

Table 2-3. Continued

Switch Short Description

/target:<target> /t Specifies which targets should be executed. Targets
are declared in a semicolon-separated list.

/property:<n>=<v> /p Allows you to set properties for the build. If a prop-
erty is specified that exists in the project file, then
this value will take precedence.

/logger:<logger> Specifies the logger used to capture and records
MSBuild events as they occur.

/verbosity:<level> /v Sets the type of information MSBuild will output.
Possible values include d (detailed), diag (diagnostic),
m (minimal), q (quiet), and n (normal).

/consoleloggerparameters /clp Passes parameters to the console logger for MSBuild.
<parameters>

/noconsolelogger /noconlog Turns off logging to the console.

/validate /val Validates the MSBuild project file with the MSBuild
schema file in use.

/validate:<schema> /val Validates the MSBuild project file with the MSBuild
schema file specified.

From the output of the previous example in Figure 2-3, did you notice that the dependent
target executed first? As mentioned, a target will execute only once during the build process.
To demonstrate this, add the following target to your MSBuild project file:

<Target
Name="DependsAgain"
DependsOnTargets="DependentTarget"

>
<Message Text="DependsAgain has executed"/>

</Target>

Now invoke MSBuild with the following command: C:\MSBuild\MSBuild1\MSBuild1>
msbuild MSBuild1_rev2.csproj /t:SampleTarget;DependsAgain. Figure 2-4 shows the output.

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD 31

Figure 2-5. Output for reserved properties

As you can see, DependentTarget seems to have executed only once, before the execution
of SampleTarget. The output presented in Figure 2-4 does not make it obvious that this target
was skipped the second time. If you use the command-line parameter /v:d or /v:diag, it will
explicitly state that this target was indeed skipped. Previously it was mentioned that a Target
will be described to print the values for the reserved properties; the specification for that
target is as follows:

<Target Name="PrintReservedProperties">
<Message Text="MSBuildProjectDirectory : ➥

$(MSBuildProjectDirectory)" />
<Message Text="MSBuildProjectFile : ➥

$(MSBuildProjectFile)" />
<Message Text="MSBuildProjectExtension : ➥

$(MSBuildProjectExtension)" />
<Message Text="MSBuildProjectFullPath : ➥

$(MSBuildProjectFullPath)" />
<Message Text="MSBuildProjectName : ➥

$(MSBuildProjectName)" />
<Message Text="MSBuildBinPath : ➥

$(MSBuildBinPath)" />
<Message Text="MSBuildProjectDefaultTargets : ➥

$(MSBuildProjectDefaultTargets)" />
<Message Text="MSBuildExtensionsPath : ➥

$(MSBuildExtensionsPath)" />
</Target>

After you add this to the project file, you can invoke it with the following command:
>msbuild MSBuild1.csproj /t:PrintReservedProperties. Note this was added to the original
version of the project file, not the MSBuild1_rev2.csproj file.

In Figure 2-5, you can see the values for the reserved properties that are available with
MSBuild. Now we will explain some predefined targets.

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD32

Predefined Targets
Previously you saw the predefined Build target execute. You may be wondering what other
predefined targets are available and where they are located. Predefined targets are housed in
either the Microsoft.CSharp.targets file (if your project is a C# project; otherwise, see the
import statement in your project file) or the Microsoft.Common.targets file. The Microsoft.CSharp.
targets file is imported into your project with the Import element. That file then imports the
Microsoft.Common.targets file. As you examine these predefined targets, keep in mind that you
may override them to declare your own behavior. For example, if you wanted to copy resources
to another location during the build process, then you could change the Build target. You will
examine a target that changes how your C# files are built later in this section. Table 2-4 lists
some predefined targets; this is not an exhaustive list because many targets exist simply as
support for other targets.

Table 2-4. Some Predefined Targets

Name Description

BeforeBuild Empty target that will be called before the build process
begins. You can use this to augment the build with your own
steps. For example, you can use this to clean items or stop
running services.

AfterBuild Empty target that will be called after the build process is
complete. You can use this if you want to augment the build
process with your own build steps. For example, you can use
this to copy output to specific directories or restart a service.

CoreBuild This is the target that actually builds your project.

BeforeCompile Empty target that will be called before your project gets
compiled. If you need to augment the compile with
preprocessing, override this task.

AfterCompile Empty target that will be called after your project has been
compiled. If you need to perform steps after project
compilation, you can override this task.

Compile Target responsible for compiling your project.

CoreCompile Target that will actually make the call to the underlying
compiler for your files.

BeforeRebuild Empty target that will be executed before Rebuild starts.

AfterRebuild Empty target that will be executed after Rebuild has completed.

Rebuild Target that rebuilds your project.

BeforeClean Empty target that is executed before Clean is performed.

AfterClean Empty target that is invoked after the Clean target has completed.

Clean Target that will perform a clean on your project. All
intermediate and built files will be removed.

PostBuildEvent Target that will be specified through Visual Studio to run after
a successful/unsuccessful build.

PreBuildEvent Target that will be created through Visual Studio to run before
a build.

Run Target used to start your application, if it is an executable project.

BeforePublish Empty target that will be called before Publish has started.

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD 33

Name Description

AfterPublish Empty target that will be executed after Publish has completed.

Publish Use this to replicate the ClickOnce Publish behavior from
outside Visual Studio. Note: This is not the target that Visual
Studio will invoke when using ClickOnce, but it is the suggested
means to replicate the functionality.

PublishOnly Publish target used by ClickOnce. Note: If you override
BuildPublish and AfterPublish, those targets will also be
invoked by this target.

SignClickOnceDeployment Target that will sign the deployment files created by ClickOnce.

BeforeResolveReferences Empty target that is executed before ResolveReferences is
invoked.

AfterResolveReferences Empty target that is called after the ResolveReferences target
has completed.

ResolveReferences Target that is responsible for resolving the project references.

BeforeResGen Empty target that is invoked before ResGen is run.

AfterResGen Empty target that is called after ResGen has completed.

ResGen Target that will generate resources for your project.

GenerateBootstrapper Target that will create the bootstrapper setup.exe file.

CreateSatelliteAssemblies Target that will create all the assemblies for all the cultures
your project has defined.

GenerateApplicationManifest Target that will create an application manifest for your project.

ComputeClickOnceManifestInfo Target that will gather the information necessary to create
a ClickOnce manifest.

GenerateDeploymentManifest Target that will create a deployment manifest for your project.

Now that you know many of the existing targets, how can you change how these steps are
executed? Well, keep in mind that the C# targets, properties, and tasks can be overridden with
custom versions. The version defined last will be chosen (more on this later in this section).
One method of changing these existing targets is to completely override the entire target. This
will likely not be the mechanism you’ll want to use. A better alternative is to create a target you’d
like to have performed. Then inject that target in the DependsOnTargets list at the location at
which you’d like it to be executed. To clarify this, you will learn how to change the way your
projects are built.

To change how your project is built, you have a few options. You can create targets
BeforeBuild and AfterBuild, and those will be executed at the appropriate time. You could
define PreBuildEvent or PostBuildEvent. These options provide a simple and convenient means
for customizing the build process, but what if you need more control? Previously we mentioned
that you can redefine the build target, but this is not a good idea. We’ll show how a build is
performed, and then we will show a better method. From the Microsoft.Common.targets file,
the Build target, and its required property, is defined as follows:

<PropertyGroup>
<BuildDependsOn>

BeforeBuild;
CoreBuild;

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD34

PostBuildEvent;
AfterBuild

</BuildDependsOn>
</PropertyGroup>
<Target

Name="Build"
Condition=" '$(InvalidConfigurationWarning)' != 'true' "
Outputs="$(TargetPath)"
DependsOnTargets="$(BuildDependsOn)"/>

From this excerpt you can see that the Build target itself doesn’t actually do anything; it
simply calls other targets to do all the work. Also notice that the DependsOnTargets attribute is
a property instead of simply containing the list itself. This is because if you wanted to add
a step to the build, you could just override the BuildDependsOn property with your target name
injected in there. For example, if you had a target defined as RecoredBuildCompletion that you
wanted to execute after your build completed, you would simply insert the following property
definition into your project file:

<PropertyGroup>
<BuildDependsOn>

BeforeBuild;
CoreBuild;
PostBuildEvent;
AfterBuild
RecordBuildCompletion;

</BuildDependsOn>
</PropertyGroup>

Now when your project gets built, MSBuild will ignore the BuildDependsOn property that is
defined in the Microsoft.Common.targets file, because this BuildDependsOn property overrides
its definition. When MSBuild evaluates properties and items, the last definition provided will
be used. So, the placement of these declarations is important; in this case, this declaration must
be after the import declaration for Microsoft.Common.targets. Because of this statement, your
RecordBuildCompletion target will be executed at the end. For this simple example, this is the
same as overriding the AfterBuild target.

Continuing with how projects are built, you’ll notice that CoreBuild is a dependent target
for the Build target. Let’s examine its definition from the Microsoft.Common.targets file:

<PropertyGroup>
<CoreBuildDependsOn>

BuildOnlySettings;
PrepareForBuild;
PreBuildEvent;
UnmanagedUnregistration;
ResolveReferences;
PrepareResources;
ResolveKeySource;
Compile;
SGen;

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD 35

CreateSatelliteAssemblies;
GenerateManifests;
PrepareForRun;
ObjectRelationalValidator;
UnmanagedRegistration;
IncrementalClean

</CoreBuildDependsOn>
</PropertyGroup>
<Target

Name="CoreBuild"
DependsOnTargets="$(CoreBuildDependsOn)">

<OnError Condition="'$(RunPostBuildEvent)'=='Always' or➥

'$(RunPostBuildEvent)'=='OnOutputUpdated'" ➥

ExecuteTargets="TimeStampAfterCompile;PostBuildEvent"/>
<OnError ExecuteTargets="RecordFileWrites"/>

</Target>

Here you can see how the build process is broken down. You’ll want to look at the
CoreBuildDependsOn property. The items in that list are targets that will be executed, in order,
when your project is built. If you need more fine-grained control over the build, typically you’ll
create a new target and override the CoreBuildDependsOn property with it included in the list.
So let’s do just that; we will show how to create a target, PrintIntermediateAssemblyName, and
place this target after the Compile step in the build process. For this target, you’ll also print the
value for the CoreBuildDependsOn property. You just need to modify the CoreBuildDependsOn
property and define the required target. Add the following to the project file:

<PropertyGroup>
<CoreBuildDependsOn>

BuildOnlySettings;
PrepareForBuild;
PreBuildEvent;
UnmanagedUnregistration;
ResolveReferences;
PrepareResources;
ResolveKeySource;
Compile;
PrintIntermediateAssemblyName;
SGen;
CreateSatelliteAssemblies;
GenerateManifests;
PrepareForRun;
ObjectRelationalValidator;
UnmanagedRegistration;
IncrementalClean

</CoreBuildDependsOn>
</PropertyGroup>

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD36

Figure 2-6. Output from customized build

<Target Name="PrintIntermediateAssemblyName" DependsOnTargets="Compile">
<Message Text="Intermediate assembly name: @(IntermediateAssembly)" />
<Message Text="Int assm full path:

$(MSBuildProjectDirectory)\@(IntermediateAssembly)"/>

<Message Text="---------CoreBuildDependsOn--------------"/>
<Message Text="$(CoreBuildDependsOn)"/>
<Message Text="---"/>

</Target>

The property IntermediateAssembly is an output item of the Compile target. You can just
print its value to the console using the Message task. Note: when you access items, you always
use the @() syntax, and when accessing properties, you use the $() syntax. You’ll find more
about this in Chapter 3.

Following this, you will invoke the Build target and watch its output. Since the
DefaultTarget is Build, you can call MSBuild on this project without specifying a file, and
Build will execute. Use this command to invoke it: >msbuild MSBuild1_rev2.csproj /v:detailed
/t:Clean;Build. We chose to execute Clean and then Build to make sure that all targets are
reexecuted for the build. Figure 2-6 shows the result of this build.

From Figure 2-6 you can see that the task was indeed executed immediately after the Compile
target completed. In previous versions of Visual Studio, this was basically impossible, but it took

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD 37

you only a few minutes to complete it! Now that you know how to execute targets, you can
move on to creating some new tasks.

Tasks
As stated, a task is a unit of work. You’ll want to create generic and simple tasks. If you need to
adhere to a flow of execution, such as locate ➤ copy ➤ delete, you’ll want to create each of those
as tasks; actually, you will most likely have to write only the locate task because the copy and
delete are predefined. The components that will model the flow of execution will be targets.
Tasks are usually declared within targets, but it is possible to have them outside as well.

Predefined Tasks
Many predefined tasks are available to you out of the box. These tasks are declared in the
Microsoft.Common.Tasks file and are contained in the Microsoft.Build.Tasks assembly.
Table 2-5 summarizes the predefined tasks that are available.

Table 2-5. Predefined Tasks

Name Description

AL Assembly linker. Creates one assembly from many other
components.

AspNetCompiler Precompiles ASP.NET files.

AssignCulture Given a list of files whose filenames contain a culture identifier,
creates items that contain this culture as metadata, instead of
being embedded in the filename.

Copy Copies files from one location to another.

CreateItem Creates a new item. You can also use this to copy an item.

CreateProperty Creates a property, similarly to CreateItem; you can use this to
copy properties.

Csc Invokes the C# compiler.

Delete Deletes files.

Error Raises an MSBuild error.

Exec Invokes the specified application.

FindUnderPath Determines whether specified items exist under the specified
path.

GenerateApplicationManifest Creates an application manifest that can include such things
as globally unique identifiers (GUIDs), assemblies, and files.
Note: You can use this to create a ClickOnce manifest.

GenerateBootstrapper Creates an application that can download your application
and all of its dependencies.

GenerateDeploymentManifest Creates a ClickOnce manifest.

GenerateResource Creates resources; this is functionally similar to the
resgen.exe application.

GetAssemblyIdentity Given a list of files that contain assemblies, gets all the IDs of
contained assemblies.

Continued

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD38

Table 2-5. Continued

Name Description

GetFrameworkPath Returns the full path of the location where the .NET
Framework assemblies are installed.

GetFrameworkSdkPath Returns the full path of the .NET Framework SDK.

LC Creates license files for applications.

MakeDir Creates directories.

Message Outputs messages.

MSBuild Invokes a build on another MSBuild project file.

ReadLinesFromFile Reads lines from a specified file.

RegisterAssembly Used in a similar way as the Assembly Registration tool
(regasm.exe).

RemoveDir Removes directories and their contents.

RemoveDuplicates Removes duplicates from the given item collection.

ResGen Wrapper for the resgen.exe application that can be used to
create binary .resource files.

ResolveAssemblyReference Given a list of assemblies, determines what other assemblies
depend on assemblies in that list.

ResolveComReference Given either a list of library names or a .tlb file, discovers the
location on disk.

ResolveKeySource Resolves the strong name key source.

ResolveNativeReference Resolves native references.

SGen Creates an XML serialization for specified assemblies.

SignFile Given a certificate, signs files.

Touch Updates the file access/modified date.

UnregisterAssembly Unregisters the specified assembly. This is the inverse
operation of the RegisterAssembly task.

Vbc Wrapper for the Visual Basic compiler.

VCBuild Wrapper for the Visual C++ compiler.

Warning Raises an MSBuild warning.

WriteLinesToFile Writes lines to text files.

Before you begin to write a task, or a target for that matter, you should always double-
check to make sure you’re not reinventing the wheel. We will show how to create a simple task:
HelloTask.

Creating a Task
By this point you probably have a general feeling for what a task is, but you most likely still
have many questions regarding them. For example, how can new tasks be implemented?
Tasks actually are implemented in code, so whatever you are able to do in code you are able to
accomplish in a task. This even includes showing dialog boxes and launching external applica-
tions. In the build process, you probably will not want to show dialog boxes, but you have the
option if you desire.

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD 39

■Note Before we discuss tasks, we will briefly discuss metadata, which is used in the task samples. Items
can have metadata associated with them. Items actually have two classes of metadata: well-known metadata
and custom metadata. We will provide more details about metadata in later chapters. An example of the
well-known metadata is FullPath; you can get the full path to an item by simply getting the value of this
metadata item. To access metadata, you use the %() operator. To get the full path for an item, use the syntax
@(ItemName->'%(FullPath)').

In this section, you will learn how to create a simple task, including invoking it from your
project file. This simple task will be HelloTask. The HelloTask task will accept an assembly name
as its input, prepend HelloTask:, and return it to the target that called it. To do this, your task
must be able to accept an input and be able to create an output. Generally, creating a task involves
three general steps:

1. Specify the task in your project file.

2. Write the .NET class behind the task.

3. Specify in the project file where the task can be found.

Now you will dissect these steps and create your first custom task! You first need to specify
the task in your project file. Since you know you will pass in the assembly name, it should depend
on the Compile target, and you want to print the result to the console. Insert the following target
into the project file:

<Target Name="DoHelloTask" DependsOnTargets="Compile">
<HelloTask

TheAssembly="@(IntermediateAssembly->'%(FullPath)') "
>

<Output TaskParameter="HelloOutput" PropertyName="HelloTaskString" />
</HelloTask>
<!-- Now print out the task output -->
<Message Text="$(HelloTaskString)"/>

</Target>

You have just created a new target, DoHelloTarget, that depends on the Compile target and
calls a custom task, the HelloTask task. This task has one input, TheAssembly. TheAssembly has
been passed the value of "@(IntermediateAssembly->'%(FullPath)')". Previously we used
IntermediateAssembly, but this time you have specified you would like FullPath to be passed
into the task. (We will discuss other operations that can be performed in later chapters.)
The output for the HelloTask task is defined by the <Output TaskParameter="HelloOutput"
PropertyName="HelloTaskString" /> line. Since tasks are implemented in code, MSBuild must
have a mechanism to determine what the inputs and outputs are. Inputs and outputs are
properties of those classes. The inputs of your task are attributes of the task element. The names
of these attributes must be the same as their corresponding properties in the implementing
class. The outputs must be specified inside an Output tag, and the value of its PropertyName
attribute must be the same as the name of the corresponding class. The TaskParameter attribute
of the Output element is the name used to refer to this value in the MSBuild project file(s). You
are finished with the first step, so now you will move on to the next one.

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD40

Now you have to write the code that lies behind the task. For this you will need to perform
the following steps:

1. Launch a new instance of Visual Studio.

2. Create a new class library project.

3. For the name, specify SampleTasks1.

4. Click Finish, and rename the class to HelloTask.

5. Add a reference for Microsoft.Build.Framework and Microsoft.Build.Utilities.

6. Add the using statements for both namespaces, namely, using Microsoft.Build.
Framework; and using Microsoft.Build.Utilities;.

At this point, you’ll have an empty class with a few references included. This is a good
time to make sure you haven’t mistyped anything, so you should build the project. After you
confirm your build, you need to make this class a task. To do this, you’ll need to inherit from
the base class Microsoft.Build.Utilities.Task. This class has the public bool Execute() method
that you will need to override. This method is automatically called when it is time to execute the
task. Also, you’ll need to specify the properties for the task. MSBuild will set the input properties,
and you’ll want them to be of the Microsoft.Build.Framework.ITaskItem type. The following is
the class that represents this task:

public class HelloTask : Task
{

private ITaskItem _theAssembly;
private string _helloOutput;

//This is the parameter for the input. Place Required
//attribute to ensure that is has been specified before you continue
[Required]
public ITaskItem TheAssembly
{

get
{

return this._theAssembly;
}
set
{

this._theAssembly = value;
}

}
//This is your output.
//Place the Output attribute so MSBuild can find it.
[Output]
public string HelloOutput
{

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD 41

get
{

return this._helloOutput;
}
set
{

this._helloOutput = value;
}

}
/// <summary>
/// This is the method that will automatically be called
/// by MSBuild to execute your task.
/// </summary>
/// <returns>true if task succeeded false otherwise</returns>
public override bool Execute()
{

this.HelloOutput = "HelloTask: " + this.TheAssembly;
return true;

}
}

You should note a few things about this class file. The inputs and outputs are defined as
properties, and both have get() and set() methods. Also, for outputs you should place the Output
attribute on the property, and for required properties you should use the Required attribute. As
mentioned, the Execute() method is the method that will automatically be called by MSBuild
when it is time to execute your task. For properties that are Required, those are promised to be
set before Execute() is invoked. Your task can perform whatever steps you require, but the only
way it can interact with other tasks in your MSBuild file(s) will be through your properties.

Now that you have defined how this task will be performed, it is time to finish the integra-
tion. Following these three steps will conclude creating the task:

1. Build the assembly that contains the task.

2. Place the assembly in a known and accessible location.

3. Declare the task in your project file and the location of the assembly that contains it.

Build the assembly as you normally do through Visual Studio. You can also use MSBuild now
that you know how. After this, a .dll file is created that you can place in a new TaskAssemblies
folder in the same directory as your project. In a large build scenario, you may have a specific
location, or the GAC, in which all task assemblies are automatically placed upon build. So, now
you need to add the following statement to the project file:

<UsingTask TaskName="HelloTask" ➥

AssemblyFile="C:\MSBuild\MSBuild1\MSBuild1\TaskAssemblies\SampleTasks1.dll" />

This statement can appear anywhere in the project file. The AssemblyFile attribute of
UsingTask specifies where the assembly is located, and TaskName specifies which task is declared
inside that assembly. A Condition attribute exists, as it does for every MSBuild element. The last
element that can be present is the AssemblyName attribute. The AssemblyName specifies the name

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD42

Figure 2-7. Output from HelloTask execution

of the assembly that contains the required task implementation. You must choose between using
the AssemblyFile or AssemblyName attribute; you cannot use both, but at least one must be present.
If you use AssemblyFile, then the class will be loaded by the System.Reflection.LoadFrom method;
if you use AssemblyName, then it will be loaded using System.Reflection.Load.

Now that you are finished, you should invoke it and see whether it works. At this point, you
should have the SampleTasks1.dll file in the TaskAssemblies folder, which is in the same direc-
tory in which your project file resides. Your project file must contain the following statements:

<UsingTask TaskName="HelloTask" ➥

AssemblyFile="C:\MSBuild\MSBuild1\MSBuild1\TaskAssemblies\SampleTasks1.dll"/>
<Target Name="DoHelloTask" DependsOnTargets="Compile">

<HelloTask
TheAssembly="@(IntermediateAssembly->'%(FullPath)')"

>
<Output TaskParameter="HelloOutput" PropertyName="HelloTaskString" />

</HelloTask>
<!-- Now print out the task output -->
<Message Text="$(HelloTaskString)"/>

</Target>

To invoke this task, execute the following command: >msbuild MSBuild1_rev2.csproj /t:
DoHelloTask. If you get some errors, usually they are descriptive, and you may need to modify
your project file. If all goes well, your output should look like Figure 2-7.

From Figure 2-7, you can see that HelloTask successfully completed and printed the path
of the intermediate assembly to the console. Notice that this target also caused the Compile
target to be executed. This is the expected behavior because it is in the DependsOnTargets list.
From this simple example, you can imagine how your projects can use MSBuild to automate
and streamline your build and deploy methods. In later chapters, we will discuss in further
detail how to use MSBuild.

Summary
In this chapter, we discussed what build tools are and why they are now a required component
in the software development life cycle. We also introduced Microsoft’s new build tool, MSBuild.
We covered all of the key elements that you need to start customizing your builds using MSBuild.
For the next few chapters, we will build on this foundation so you can extend your build process
to suit your needs. In the next chapter, for example, we will show MSBuild in action. You will
see many examples of using MSBuild to help you comprehend some of the difficult-to-understand
features and to provide more of a concrete basis on which to further build.

CHAPTER 2 ■ THE UNIF IED BUILD ENGINE: MSBUILD 43

45

C H A P T E R 3

■ ■ ■

MSBuild: By Example

Even if you have experience using an XML task-based build tool, such as Ant or NAnt, MSBuild
is significantly different. In fact, MSBuild is different not only in execution but also in syntax.
Therefore, to really get a feel for MSBuild, you must get your hands dirty using the tool. As you
begin to explore what MSBuild has to offer to your projects, you will naturally seek more knowl-
edge of MSBuild. This chapter will help you get your hands dirty by showing you several examples
of how you can use MSBuild. Also, this chapter will present some important techniques for using
MSBuild effectively. We will provide a variety of tips, covering topics such as integrating MSBuild
into Visual Studio and formatting your output.

These samples are set up to be mostly independent. This is because each sample expresses
a set of specific ideas, so you will be able to examine and try each concept on its own. After
this chapter, you should have a much greater feel for building your applications with MSBuild.
Following this chapter, we will continue the coverage of MSBuild by showing how to use some
of its more advanced features.

Introducing Well-Known Metadata
When using MSBuild, you have two primary ways to pass data to tasks and targets; those are
through properties and through items. A property is a key/value pair, and an item is typically
a reference to a file. For example, when your project is compiled, the Compile item is evaluated
to determine which files should be included. Using items for files over properties has some
advantages; one of these advantages is that items can have metadata attached to them. The
following is a sample of an item declaration from the Microsoft.Common.targets file:

<ItemGroup>
<AppConfigFileDestination Include="$(OutDir)$(TargetFileName).config"/>

</ItemGroup>

In the previous declaration, the item AppConfigFileDestination is being defined, and its
value is specified in the Include attribute. This attribute is using two properties, OutDir and
TargetFileName, to create the name of the config file. An example of its value is bin\debug\
WindowsApplication1.exe.config.

CHAPTER 3 ■ MSBUILD: BY EXAMPLE46

When you specify which files are included in the item declaration, you can include multiple
files by separating them with semicolons. Another way to include multiple files is to use expres-
sions that include wildcards. You can use three wildcard elements with MSBuild: ?, *, and **.
You can use ? to replace a single character with any character. For example, the include decla-
ration Include="c?r.cs" would include the files car.cs, cbr.cs, ccr.cs, and so on. The * element
can replace any location with zero or more characters. To change the previous example,
Include="c*r.cs" would include car.cs, caar.cs, cr.cs, colorer.cs, and so on. The ** notation
tells MSBuild to search the directories recursively for the pattern. For example, Include="src
***.cs" would include all the files under the src directory with .cs extensions.

When you include an item in your MSBuild project file, it may seem you are simply
adding a text entry, but what you don’t see is what’s happening behind the scenes. When you
add an item, you’re adding a rich object to your project, and you get some information for free!

For this example, we will use MetaDataEx.csproj. This is a simple Windows Forms application,
similar to the one contained in Chapter 2. Table 3-1 describes the metadata that is automatically
set when your project file is loaded; this is well-known metadata.

Table 3-1. An Item’s Well-Known Metadata

Metadata Name Description

Identity A unique value for each item in the item collection.

Filename Filename for this item, not including the extension.

Extension File extension for this item.

FullPath Full path of this item including the filename.

RelativeDir Path to this item relative to the current working directory.

RootDir Root directory to which this item belongs.

RecursiveDir Used for items that were created using wildcards. This would be the directory
that replaces the wildcard(s) statements that determine the directory.

Directory The directory of this item.

AccessedTime Last time this item was accessed.

CreatedTime Time the item was created.

ModifiedTime Time this item was modified.

The following is a target that demonstrates how to use well-known metadata:

<ItemGroup>
<MDForm Include="MetaDataFrm.cs">

<Author>
<Name>Sayed Ibrahim Hashimi</Name>
<Email>sayed.hashimi@gmail.com</Email>

</Author>
</MDForm>

CHAPTER 3 ■ MSBUILD: BY EXAMPLE 47

<MDFormOther Include="..\..**\MSBuild1*.cs">
<Author>

<Name>Sayed Y. Hashimi</Name>
<Email>hashimi_sayed@gmail.com</Email>

</Author>
</MDFormOther>

</ItemGroup>
<Target Name="ShowWellKnownMD">

<Message Text="Normal: @(MDForm)" />
<Message Text="FullPath: @(MDForm->'%(FullPath)') " />
<Message Text="RootDir: @(MDForm->'%(RootDir)')" />
<Message Text="Filename: @(MDForm->'%(Filename)')" />
<Message Text="Extension: @(MDForm->'%(Extension)')" />
<Message Text="RelativeDir: @(MDForm->'%(RelativeDir)')" />
<Message Text="Directory: @(MDForm->'%(Directory)')" />
<Message Text="RecusriveDir: @(MDForm->'%(RecursiveDir)')" />
<Message Text="Identity: @(MDForm->'%(Identity)')" />
<Message Text="ModifiedTime: @(MDForm->'%(ModifiedTime)')" />
<Message Text="CreatedTime: @(MDForm->'%(CreatedTime)')" />
<Message Text="AccessedTime: @(MDForm->'%(AccessedTime)')" />

<Message Text="%0D%0A;--------------"/>
<Message Text="Recursive dir [MDFormOther]: "/>
<Message Text="%09@(MDFormOther->'%(Filename)➥

%09%(RecursiveDir)', '%0D%0A%09;')"/>

<Message Text="%0D%0A;Relative dir [MDFormOther]: "/>
<Message Text="%09;@(MDFormOther->'%(Filename)➥

%09;%(RelativeDir)', '%0D%0A%09;')"/>
</Target>

In this snippet from the MetaDataEx project file, an ItemGroup contains the item declarations
upon which this target will act. This ItemGroup defines two items. One of these items, MDForm,
includes only a single file and is explicitly defined. This item will provide the results of many of
the metadata queries in this sample. The other item contains many files and has been defined
using wildcards. This item will demonstrate how to use the RecursiveDir and RelativeDir
metadata values. This file also includes some formatting of the output; for further informa-
tion regarding formatting, see the “Formatting Your Output” section. To invoke this target
on your project, you will invoke MSBuild by executing the following at the command line:
>msbuild MetaDataEx.csproj /t:ShowWellKnownMD. Figure 3-1 shows the output from this target.

CHAPTER 3 ■ MSBUILD: BY EXAMPLE48

In Figure 3-1 you can see that MSBuild was able to resolve the items to the actual files on
disk. If you are creating a new task that acts upon a file, you most likely will want to pass the
task the FullPath value of the item. This will ensure that your task is dealing with the same file
as your MSBuild project file. For example, if you want to copy IntermediateAssembly to
another location, then you can use a declaration similar to the following one:

<Copy SourceFiles="@(IntermediateAssembly->'%(FullPath)')"
DestinationFiles=➥

"@(IntermediateAssembly->'$(Destination)\%(Filename)%(Extension)')"/>

This will copy the IntermediateAssembly to the Destination location and preserve the file-
name and extension. It is a best practice to use the FullPath for items as inputs to the tasks to
ensure that no other file can be used in its place. When you are creating your MSBuild targets
and tasks, it is helpful to remember what metadata is available to you out of the box and to
remember how you can use it effectively.

Formatting Your Output
As you use MSBuild to build your projects, you may want to format your output for increased
readability or for other reasons. MSBuild uses the % character to show the beginning of an
escaped character. The % character is followed by the ASCII character code for the desired
character. You can find a complete reference for these codes in the MSDN Help documenta-
tion. For example, if you would like to place a carriage return line feed (\r\n) in your text, use
the %0D%0A code. For example, consider the following FormatNewLine target, which is in the
MSBuildEx.csproj file:

<Target Name="FormatNewline">
<Message Text="FirstLine%0D%0ASecondLine" />

</Target>

Figure 3-1. Well-known metadata output

CHAPTER 3 ■ MSBUILD: BY EXAMPLE 49

Figure 3-2. MSBuild-formatted output

To execute this target, you call MSBuild with the following at the command line:
>msbuild MetaDataEx.csproj /t:FormatNewLine. Figure 3-2 shows the output from this target.

From Figure 3-2 you can see that the new line was successfully inserted into the output
for this text. Table 3-2 lists some ASCII character codes that you may find useful when creating
your project files.

Table 3-2. Useful ASCII Character Code Escape Values

Character ASCII Escape Value

Carriage return %0D

Line feed %0A

New line %0D%0A

Tab %09

Space %20

Quotes (") %22

Apostrophe (') %27

Ampersand (&) %26

Percent sign (%) %25

In some circumstances when you are using a vector value, you may want to change the
delimiter when using the Message task. Refer to the following target:

<Target Name="ShowFiles">
<Message Text="MDFormOther files:" />
<!-- Uses standard ; delimiter -->
<Message Text="@(MDFormOther->'%(Filename)')" />
<!-- Uses , delimiter instead-->
<Message Text="@(MDFormOther->'%(Filename)', ',')" />

</Target>

The <Message Text="@(MDFormOther->'%(Filename)')" /> call will print the values for the
files included with the default delimiter, which is a semicolon. If you want a different delim-
iter, you can specify it as an argument. For example, the <Message Text="@(MDFormOther->
'%(Filename)', ',')" /> call changes the delimiter to a comma. You can also use this feature to

format your output! For example, if you want to align all the filenames, you can specify the
delimiter to be a new line. Add the following message invocation to the target:

<Message Text="@(MDFormOther->'%(Filename)', '%0D%0A')" />

This invocation is specifying that a new line should delimit all the entries that will be
included in the list. The target will look like the following snippet now:

<Target Name="ShowFiles">
<Message Text="MDFormOther files:" />
<!-- Uses standard ; delimiter -->
<Message Text="Default delimiter" />
<Message Text="@(MDFormOther->'%(Filename)')" />
<!-- Uses , delimiter instead-->
<Message Text="Comma delimiter" />
<Message Text="@(MDFormOther->'%(Filename)', ',')" />
<!-- This lines up the filenames -->
<Message Text="Align on new lines"/>
<Message Text="@(MDFormOther->'%(Filename)', '%0D%0A')" />

</Target>

When you execute this task, you will get the result shown in Figure 3-3.

CHAPTER 3 ■ MSBUILD: BY EXAMPLE50

I’m sure you noticed that this output is still not very readable. Now you’ll add a few features
to make it better. First, we will show how to add new lines to separate the sections of this output.
To add a new line, insert <Message Text="%0D%0A"/> where desired. Second, we’ll show how to
align all the elements under their headings with tabs. To do this, you can add a tab before the
result for the first two targets. But for the last target, you will also have to add a tab to the delim-
iter. The final target should look like the following:

<Target Name="ShowFilesFinal">
<Message Text="MDFormOther files:%0D%0A" />
<!-- Uses standard ; delimiter -->
<Message Text="Default delimiter" />
<Message Text="%09@(MDFormOther->'%(Filename)')" />
<Message Text="%0D%0A"/>

Figure 3-3. Output from ShowFiles with custom delimiter

Figure 3-4. Output from message with formatting

CHAPTER 3 ■ MSBUILD: BY EXAMPLE 51

<!-- Uses , delimiter instead-->
<Message Text="Comma delimiter" />
<Message Text="%09@(MDFormOther->'%(Filename)', ',')" />
<Message Text="%0D%0A"/>
<!-- This lines up the filenames -->
<Message Text="Align on new lines"/>
<Message Text="%09@(MDFormOther->'%(Filename)', '%0D%0A%09;')" />
<Message Text="%0D%0A"/>

</Target>

Figure 3-4 shows the output from executing this new target.

You can see that the output from this target execution is much more readable than the
previous invocations.

Now you have successfully made the output much easier to read, but what have you done
to the readability of the build file itself? Sifting through all the ASCII values is not only nonin-
tuitive but is distracting. What can you do to avoid this problem? You may have guessed—you
can keep these values inside properties. In a few cases, this method doesn’t work as expected,
such as when you are placing whitespace-related items inside the properties. But you can get
around that. We will skip covering those issues for now, however, in order to examine the other
issues first. Refer to the following properties:

<PropertyGroup>
<AT_SIGN>%40</AT_SIGN>
<PERCENT_SIGN>%25</PERCENT_SIGN>
<DOUBLE_QUOTE>%22</DOUBLE_QUOTE>
<SINGLE_QUOTE>%27</SINGLE_QUOTE>
<CR>%0D</CR>
<LF>%0A</LF>
<!-- New line items removed -->

</PropertyGroup>

CHAPTER 3 ■ MSBUILD: BY EXAMPLE52

From these properties you can see that the ASCII values for each character in the previous
table have been supplied in the appropriate property. Now you will examine how you can use
these properties in your build files. Refer to the following target:

<Target Name="ShowAsciiProps">
<Message Text="At sign: $(AT_SIGN)" />
<Message Text="Percent: $(PERCENT_SIGN)"/>
<Message Text="Double $(DOUBLE_QUOTE)Quote$(DOUBLE_QUOTE)" />
<Message Text="Single $(SINGLE_QUOTE)Quote$(SINGLE_QUOTE)"/>

</Target>

You can execute this target at the command line with >msbuild MetaDataEx.csproj
/t:ShowAsciiProps. Figure 3-5 shows the output from this target.

So, now you can embed ASCII values inside the project file while maintaining its readabil-
ity. Now we’ll cover the tricky situations. Since you have seen how to use escaped characters,
we will show how you can align MSBuild output using them.

In the previous example where you placed the ASCII values inside properties, we skipped
over how to deal with the whitespace characters. Here is the remainder of PropertyGroup that
was truncated previously and that contains working versions of the values:

<PropertyGroup>
<TAB>%09</TAB>
<HARD_NEW_LINE>%0A%0D%0C%08</HARD_NEW_LINE>
<SOFT_NEW_LINE>%0A%20%08</SOFT_NEW_LINE>

</PropertyGroup>

If you look at the definition for TAB, you’ll see that the %09 character is the ASCII character
code value for the tab character. This defines two variations for the new line: a HARD_NEW_LINE
and a SOFT_NEW_LINE. The SOFT_NEW_LINE is the one that acts as a new line embedded inside
your text as ASCII. The SOFT_NEW_LINE will drop down a line and start at the same horizontal
position as the start of the previous line. The HARD_NEW_LINE will drop down a line and start at
the beginning of the next line. Let’s see what they look like. Here is a target to test these new
values:

Figure 3-5. Output from the ShowUnicodeProps target

CHAPTER 3 ■ MSBUILD: BY EXAMPLE 53

<Target Name="ShowAsciiWhiteSpaceProps">
<Message Text="Space$(SPACE)Here"/>
<Message Text="Space Here"/>

<Message Text=" "/>

<Message Text="A Tab$(TAB)Example"/>
<Message Text="A Tab%09Example"/>

<Message Text=" "/>
<Message Text="(soft)New$(SOFT_NEW_LINE)Line"/>
<Message Text=" "/>
<Message Text="(hard)New$(HARD_NEW_LINE)Line"/>
<Message Text=" "/>

<Message Text="New%0D%0A;Line"/>
</Target>

In the ShowAsciiWhiteSpaceProps target, first the test messages are displayed, and the last mes-
sage contains the ASCII code embedded within the text. You can invoke this target by executing
the following at the command line: >msbuild MetaDataEx.csproj /t:ShowAsciiWhiteSpaceProps.
Figure 3-6 shows the result of this execution.

Make a note of the difference between a SOFT_NEW_LINE and a HARD_NEW_LINE before you
choose to use either. You’ll most likely want to stick to the SOFT_NEW_LINE.

With these tricks you should be able to format your output for simple situations. If you need
more fine-grained control over how the output is being returned, you may have to implement
your own task to conduct the formatting for you. Because creating a task is a fairly simple process,
if you are not able to format your output after a few minutes of trying, just create a new task to
do it for you! Another option is to write a custom logger to perform this for you, which is covered
in detail in Chapter 4.

Figure 3-6. Output from the ShowUnicodeWhiteSpaceProps target

CHAPTER 3 ■ MSBUILD: BY EXAMPLE54

Editing MSBuild Files with IntelliSense
You can edit your MSBuild files in any way you’d like. You can use any text/XML editor that
you desire. If you use a simple tool, such as Notepad, this will work, but it will not provide you
with any assistance as your create your project files. Some XML editors use the XML Schema
Document (XSD) to give you some assistance. One such tool is Visual Studio! If you open your
project file inside Visual Studio, then IntelliSense will be enabled, and you will be able to cre-
ate your MSBuild files much more quickly.

Visual Studio’s IntelliSense is particularly useful when you know what you want to do but
don’t remember all the details. For instance, if you are creating a target to copy all your source
files that need to call the Copy task, you may not remember what all of its attributes are. If you
open the file in Visual Studio, then as you create the new target, you will be given the list of
options available to you. For example, as you are creating the call to the Copy task, you will be
provided with a list like the one shown in Figure 3-7 that tells you the names of the attributes.

In Figure 3-7 you can see how you will spend less time if you create your MSBuild files
using Visual Studio. This will also decrease the amount of errors you create as your write your
targets. If you are developing your project using Visual Studio and you want to edit the project
file concurrently, then you have two options for using Visual Studio as your editor:

• Open a new instance of Visual Studio, and load your project file there.

• Unload your project, edit your project file, and then reload your project.

You can employ the option of opening your project file in a new instance of Visual Studio.
If you’d like to have only a single instance of Visual Studio, then you can follow these steps:

1. Unload the project. You can do this in the Solution Explorer by right-clicking the project
and then selecting Unload Project. If you have a file from that project open, you can
select Project ➤ Unload Project.

2. Open the project file for editing. To do this, select File ➤ Open ➤ File.

■Note You cannot drag and drop the project file into Visual Studio.

3. Select your project file, and click Open.

Figure 3-7. Visual Studio IntelliSense for MSBuild files

CHAPTER 3 ■ MSBUILD: BY EXAMPLE 55

4. Edit your project file, and then save the changes.

5. Close the project file.

6. Reload the project.

Integrating MSBuild into Visual Studio
Throughout this chapter you have been using MSBuild at the command line. We have a few
reasons for giving these instructions: to emphasize the separation of MSBuild from Visual Studio
and because complex builds are more easily executed from the command line. However, you
can integrate MSBuild into Visual Studio in a simple way. In Visual Studio, you can add menu
items to the Tools menu to invoke any executable. This is the method you will employ to inte-
grate MSBuild into Visual Studio. To do this, follow these simple steps:

1. Open the External Tools dialog box by selecting Tools ➤ External Tools.

2. Add a new tool by clicking Add.

3. Enter MSBuild (or anything you’d like to call it) for the title.

4. For the command, provide the full path to the msbuild.exe file.

5. For the arguments, you need to provide the full path to the project file. First add the
project directory, as shown in Figure 3-8.

Figure 3-8. MSBuild project directory specification

CHAPTER 3 ■ MSBUILD: BY EXAMPLE56

6. Then, add a backward slash (\) followed by the project filename. Specify the project
filename in a similar way as you specified the project directory.

7. Following this, you can specify any arguments for MSBuild in the same text box.

8. Set Initial Directory to be Project Directory, just like in Figure 3-8.

9. Also check the Use Output Window and Prompt for Arguments boxes.

10. The resultant dialog box should look similar to Figure 3-9. Click OK to finish.

As you can see in Figure 3-9, the verbosity of MSBuild has been specified to be detailed (d),
and a target has also been specified. Since you have checked the Prompt for Arguments radio
button, you can change these default arguments for each execution of MSBuild if you choose.

After you close the dialog box, make sure one of your project files is open. Invoke MSBuild
by selecting Tools ➤ MSBuild (or whatever you set as the value for the title). At this point, you
will see a dialog box similar to Figure 3-10.

Figure 3-9. MSBuild integration into Visual Studio

Figure 3-10. MSBuild dialog box in Visual Studio

As mentioned, this specifies a default verbosity and the target that you want to have
executed, but you can change this before every invocation if you choose. Also, if you’d like to

CHAPTER 3 ■ MSBUILD: BY EXAMPLE 57

change the default values, use the External Tools dialog box to modify the MSBuild external
tool definition. As you specify these values, keep in mind that this will be the same for every
instance of Visual Studio. Because of this, many times it is inappropriate to specify a default
target, unless it is a common one such as Build. After you have decided what arguments to
specify, click the OK button, and your build will begin. Since you checked the Use Output
Window box, all of the output from MSBuild will be redirected to the Output window inside
Visual Studio. After executing this task, you will see the Output window shown in Figure 3-11.

■Note This view of the Output window shows only the end of the MSBuild output.

As we have shown, it is simple to integrate MSBuild into Visual Studio by using the
External Tools dialog box in Visual Studio. This is particularly useful for targets that you find
yourself frequently executing.

Introducing Custom Metadata
Metadata, the data that describes data, seems to be becoming just as important as the data
itself. It seems that every new technology has metadata incorporated into its plan. MSBuild is
certainly no different! In fact, MSBuild heavily relies on metadata. Earlier we showed how to
access and use well-known metadata. Well-known metadata is “automagically” generated for
your items. Some examples of well-known metadata in MSBuild are the full path of the file
and its directory. You are not limited only to the well-known metadata, though. You can add
custom metadata to items as well. Refer to the following ItemGroup:

<ItemGroup>
<MDForm Include="MetaDataFrm.cs">

<Name>Sayed Ibrahim Hashimi</Name>
<Email>sayed.hashimi@gmail.com</Email>

</MDForm>
<MDFormOther Include="..\..**\MSBuild1*.cs">

<Name>Sayed Y. Hashimi</Name>
<Email>hashimi_sayed@gmail.com</Email>

Figure 3-11. Output window from MSBuild execution inside Visual Studio

CHAPTER 3 ■ MSBUILD: BY EXAMPLE58

</MDFormOther>
</ItemGroup>

This item group has two items defined: MDForm and MDFormOther. With the files that are
included in the items, the author information is provided in the Name and Email elements. The
name and e-mail address are provided for those responsible for the classes included. How can
you use this information in your MSBuild project files? Refer to the following target that prints
the author information for these items:

<Target Name="PrintAuthorInfo">
<Message Text="@(MDForm->'%(Filename)%(Extension)')" />
<Message Text="%09Name:%09@(MDForm->'%(Name)')"/>
<Message Text="%09Email:%09@(MDForm->'%(Email)')"/>

<Message Text="%0D%0A"/> <!--New line -->
<Message Text="@(MDFormOther->'%(Filename)%(Extension)', ' ')" />

<Message Text="%09Name:%09%(MDFormOther.Name)"/>
<Message Text="%09Email:%09%(MDFormOther.Email)"/>
<!-- Don't use this will print name/e-mail

once for each file included in the item
<Message Text="%09Name:%09@(MDFormOther->'%(Name)')"/>
<Message Text="%09Email:%09@(MDFormOther->'%(Email)')"/>
-->

</Target>

This target will first print the name and e-mail address for the MDForm author. The Message
item that prints the name and e-mail is <Message Text="%09Name:%09@(MDForm->'%(Name)')"/>.
This Message item contains some formatting to make it more readable (which is covered in the
“Formatting Your Output” section if you are wondering about all the weird characters). If you
strip away the formatting, you are left with <Message Text="Name: @(MDForm->'%(Name)')"/>.
So, you just learned how to access the Name metadata element. It is just like how you access
well-known metadata.

Did you notice that the name/e-mail is printed differently in the MDFormOther item as
opposed to the technique used in the MDForm item? Here are the different ways the name is
printed, minus the formatting:

<Message Text="Name: @(MDForm->'%(Name)')"/>
<Message Text="Name: %(MDFormOther.Name)"/>

In the MDForm item, you are accessing the name as a vector value, and in MDFormOther you
are accessing it as a scalar value. We discuss the difference between scalar and vector values in
further detail in the “Understanding the Difference Between @ and %” section. We will briefly
review the concepts here for completeness. When you use the % syntax, you are saying you are
expecting a vector-valued result. That is, if three items are included, you want each to be processed
separately. So, if there is another item in the MDForm include list, then you will see the name
printed one time for each include. With the @ and -> syntax, you are requesting the result in
a single string. In this scenario, the MDFormOther technique is the correct approach.

The difference between vector and scalar values can be confusing; if you need more
information, see the next section.

CHAPTER 3 ■ MSBUILD: BY EXAMPLE 59

Understanding the Difference Between @ and %
When using MSBuild, you have three ways to evaluate an item/property expression to a value,
as described in Table 3-3.

Table 3-3. Methods to Access Item/Property Values

Syntax Description

$() Extracts the value of a property

@() Extracts the value of an item as a list, that is, vector

%() Extracts value of an item as a single string, that is, scalar

The simplest of these methods is the $() syntax. You will use this syntax when referencing
properties and only for properties.

Now we will discuss the two methods to retrieve item values. Why is there one method to
access a property and two methods to access an item? As mentioned, a property is a simple
key/value pair. So, for every key, there is only a single value. In other words, a property has
a one-to-one relationship between the key and value. An item, on the other hand, has a one-to-
many relationship. An item can contain many values inside it, but it can also contain just one.
Examine the following item definition:

<ItemGroup>
<MDForm Include="MetaDataFrm.cs">

<Name>Sayed Ibrahim Hashimi</Name>
<Email>sayed.hashimi@gmail.com</Email>

</MDForm>
<!-- Remainder truncated to conserve space -->

</ItemGroup>

The MDForm item here contains one value inside it, which is MetaDataFrm.cs. Now you will
see what happens when you use both methods to access the value for this item and compare
the results. The following is a simple target to demonstrate this:

<Target Name="VectorScalar1">
<Message Text="%40(MDForm->'% (Filename)'): @(MDForm->'%(Filename)')" />
<Message Text="%25(MDForm.Filename): %(MDForm.Filename)" />

</Target>

This target will simply print the value for the filename of this item. Note the use of %40,
which is the escape code for the at (@) character; similarly, the % character is escaped with %25.
Figure 3-12 shows the output from this target.

Figure 3-12. Output from the target VectorScalar1

CHAPTER 3 ■ MSBUILD: BY EXAMPLE60

As you can see, the results of both reference methods are the same! Well, now you will see
another target that is similar and see whether there is any difference. The following is the defi-
nition of the target and the property that it references:

<Target Name="VectorScalar2">
<Message Text="%40(Compile->'% (Filename)'): @(Compile->'%(Filename)')"/>

<Message Text=" "/> <!-- Empty line for readability -->

<Message Text="%25(Compile.Filename): %(Compile.Filename)"/>
</Target>

<ItemGroup>
<Compile Include="MetaDataFrm.cs">

<SubType>Form</SubType>
</Compile>
<Compile Include="MetaDataFrm.Designer.cs">

<DependentUpon>MetaDataFrm.cs</DependentUpon>
</Compile>
<Compile Include="Program.cs" />
<Compile Include="Properties\AssemblyInfo.cs" />
<EmbeddedResource Include="Properties\Resources.resx">

<Generator>ResXFileCodeGenerator</Generator>
<LastGenOutput>Resources.Designer.cs</LastGenOutput>
<SubType>Designer</SubType>

</EmbeddedResource>
<Compile Include="Properties\Resources.Designer.cs">

<AutoGen>True</AutoGen>
<DependentUpon>Resources.resx</DependentUpon>

</Compile>
<None Include="Properties\Settings.settings">

<Generator>SettingsSingleFileGenerator</Generator>
<LastGenOutput>Settings.Designer.cs</LastGenOutput>

</None>
<Compile Include="Properties\Settings.Designer.cs">

<AutoGen>True</AutoGen>
<DependentUpon>Settings.settings</DependentUpon>
<DesignTimeSharedInput>True</DesignTimeSharedInput>

</Compile>
</ItemGroup>

This target is almost identical to the previous target, with the exception that there is a blank
line printed to increase readability, and you’ll see why. Execute this target with the following
command: >msbuild MetaDataEx.csproj /t:VectorScalar2. Figure 3-13 shows the output from
this execution.

CHAPTER 3 ■ MSBUILD: BY EXAMPLE 61

In this target, you can see that the output for both syntaxes certainly differs. Now let’s
examine it a bit closer. The task call that generated the first section is <Message Text="@
(Compile->'% (Filename)'): @(Compile->'%(Filename)')"/>. This call generated a single
string to be output to the console. That was all of the names of the Compile files separated by
the default semicolon delimiter. This is the behavior of the @ syntax. You specify the item that
you are acting upon, and then you pass the optional metadata name that you want returned.
The Filename metadata reference name is not defined in the project file; it is well-known
metadata. (We discussed well-known metadata earlier in the chapter.) No matter what item
you pass in, the result will act upon the group, not the individual items.

Contrast this to the behavior of using the % syntax; for each item in the Compile list, the
last Message task is executed. Thinking in terms of typical build steps, you will most likely be
using the % syntax when dealing with files. On the other hand, if you are passing the item to
a custom task, you will most likely send the entire item as a list. The task will then decompose
the list and act upon the individual items if necessary.

The @ notation signifies you are acting upon an array of items and that you would like to
process each item in the list individually. The -> notation is called a transform. A transform is
a one-to-one mapping from one item into another. In this sample, you transformed the element
to provide the filename of the included file. You can also perform multiple transformations at
once. For instance, how could you get the filename and extension into your lists? Let’s create
a new target from a modified version of the previous target. This target, VectorScalar3, is as
follows. Also, you will see an added call to the Message task to further clarify the use of these
transformations.

<Target Name="VectorScalar3">
<Message Text="%40(Compile->'%25(Filename)%25(Extension)'):➥

@(Compile->'%(Filename)%(Extension)')"/>

<Message Text=" "/> <!-- Empty line for readability -->

<Message Text="%25(Compile.Filename)%25(Extension):➥

%(Compile.Filename)%(Extension)"/>

<Message Text=" "/> <!-- Empty line for readability -->

Figure 3-13. Output from the VectorScalar2 target

CHAPTER 3 ■ MSBUILD: BY EXAMPLE62

<!-- Most likely not what you want to do -->
<Message Text="%40(Compile->'%25(Filename)')%25(Extension):➥

@(Compile->'%(Filename)')%(Extension)"/>
</Target>

In the first message, you are passing the value @(Compile->'%(Filename)%(Extension)').
The @ character says you are acting upon the list items of the Compile item, and the % character
determines which transformations are to be executed. In this case, you have %(Filename)%
(Extension). Figure 3-14 shows the output from this message task and for the remainder of
the target. We will explain the other items in this target shortly.

As you can see from Figure 3-14, the extensions of the files, which all happen to be .cs,
were appended to the text sent to the Message task. As mentioned, the %(Extension) transfor-
mation is within the @ reference. You will examine the behavior when this is not the case in a bit.
For now you will proceed to the individual transformations.

The next call to the Message task is provided %(Compile.Filename)%(Extension) for the text
value. For each item in the Compile list, a message task will be executed as before, but this time
the filename followed by the extension is sent to the Message task. Imagine that you iterate over
the Compile item list and that inside this loop you build a string with the filename and extension
from the current Compile item list. Notice in the %(Extension) transformation, the item name
was not specified. This is OK because this information is gathered from the Compile reference.

You may not find the last example to be too useful; instead, it further clarifies the distinction
between these two methods. In the last call, the Message task is provided with @(Compile->'%
(Filename)')%(Extension). Notice the difference between this text and the text from the first
invocation of the Message task. The key difference here is that the %(Extension) is outside the
@() reference. So in the output, instead of being included in the array output, %(Extension)
was simply appended to the output from the array output. Now you should be prepared to use
these mechanisms in your MSBuild files without getting tripped up.

Figure 3-14. Output from the VectorScalar3 target

CHAPTER 3 ■ MSBUILD: BY EXAMPLE 63

Using Environment Variables in Your Project
In Chapter 2, you were exposed to what properties are and how to use them. Properties are
similar to something you may already be familiar with—environment variables. The main
difference is that a property is defined within the scope of an MSBuild execution, whereas an
environment variable is available throughout the machine. In your builds, you may want to
reference these environment variables, and doing so is easy! To use the value of an environment
variable, you simply refer to that just as you would if it were a property. Refer to the following
target, which prints the value for the Path environment variable:

<Target Name="PrintSystemPath">
<Message Text="Path: $(Path)"/>

</Target>

To invoke this target at the command line, execute >msbuild MetaDataEx.csproj
/t:PrintSystemPath. Figure 3-15 shows the output from this invocation.

In Figure 3-15 you can see the system path’s value output to the console. As you can see,
using a property is just as easy as using a property that is defined in your MSBuild project file.
All environment variables are available to be used just as properties are in your MSBuild
project files.

Reusing MSBuild Project Elements
As you create MSBuild project files, you will want to reuse some of the elements that you defined
previously. For instance, let’s say you have created a new target that deploys your application
to a set of servers. You will need to reuse this target in more than one project. How can you do
this effectively? The most obvious answer is to copy and paste this target into every project file
that needs it. This is probably the easiest solution, but it’s the most difficult to maintain as
well. Imagine that in your organization you have 30 projects that use this target, and you need
to change the location of one of the servers. You’ll have to search for all these project files and
update them. Consolidating this functionality in a single place would be much better. With
MSBuild you can achieve this. The element that you will need is the Import project element.

Figure 3-15. Output from the PrintSystemPath target

CHAPTER 3 ■ MSBUILD: BY EXAMPLE64

So, we’ll now show a simple example of using the Import element. This sample will include the
Import1.proj file, which is as follows:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>

<FtpServer1URL>ftp.sedodream.com</FtpServer1URL>
<FtpServer2URL>ftp.apress.old.com</FtpServer2URL>

</PropertyGroup>
</Project>

In this project file you can see that two properties are defined that point to FTP sites.
These may be two servers that applications need to be deployed in. The file that uses this,
which is named ImportEx1.proj, is as follows:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<Import Project="Import1.proj"/>

<Target Name="PropertyImport1">
<Message Text="FtpServer1URL: $(FtpServer1URL)"/>
<Message Text="FtpServer2URL: $(FtpServer2URL)"/>

</Target>

</Project>

In this project file you are importing the Import1.proj file with the <Import Project=
"Import1.proj"/> statement. Typically when you create files that are to be imported into other
projects, you’ll want to store them in a special location. This is because you want to avoid
copying these files to many different locations. This project file has a single target that simply
prints the values for the properties defined in the imported project file. You can execute the
PropertyImport1 target as follows: >msbuild ImportEx1.proj /t:PropertyImport1. Figure 3-16
shows the result of this execution.

In Figure 3-16 you can see that the properties defined in the Import1.proj file were suc-
cessfully imported into the current project. Before you explore this feature in more detail, let’s
examine a related issue. When you are creating MSBuild project files, what happens if there is
a conflict of the properties, items, or targets? When two or more MSBuild elements have the
same name, the last one defined takes precedence. You can see this in action very clearly in
the following simple project file:

Figure 3-16. Output from the PropertyImport1 target

CHAPTER 3 ■ MSBUILD: BY EXAMPLE 65

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>

<FtpServer1URL>files.sedodream.com</FtpServer1URL>
</PropertyGroup>

<Target Name="PrintFtp">
<Message Text="FtpServer1URL: $(FtpServer1URL)"/>

</Target>

<PropertyGroup>
<FtpServer1URL>ftp.sedodream.com</FtpServer1URL>

</PropertyGroup>
</Project>

This project file has the property FtpServer1URL being defined twice and a target, PrintFtp,
that will print its value. Based on what was stated previously, what value do you expect to be
printed? To find out, invoke this target by executing the following at the command line:
>msbuild OverrideEx1.proj /t:PrintFtp. Figure 3-17 shows the result of this execution.

From the execution of this target you can see that the last defined FtpServer1URL,
ftp.sedodream.com, was taken as the value of that property. As you can see, there was no error
or warning issued to notify you about this naming conflict. This is an expected behavior of
MSBuild files. Similar to the idea of overriding methods in object-oriented programming, it is
not an error if you override the value of a previously defined property.

Now we’ll show what happens if you override a target. Does it have the same behavior? To
determine this, refer to the following simple MSBuild project file:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>

<Email>sayed.hashimi@gmail.com</Email>
</PropertyGroup>

<Target Name="EmailAdmin">
<Message Text="Emailing: $(Email)"/>

</Target>

Figure 3-17. Output from the PrintFtp target

CHAPTER 3 ■ MSBUILD: BY EXAMPLE66

<Target Name="EmailAdmin">
<Message Text="Email sent to : $(Email)"/>

</Target>

</Project>

The previous target has a property defined, Email, and a target, EmailAdmin, defined twice.
According to what we stated previously, the last EmailAdmin target defined should be executed.
You can check this by invoking this target with >msbuild OverrideEx2.proj /t:EmailAdmin.
Figure 3-18 shows the output from this.

In Figure 3-18 it is clear that indeed the last EmailAdmin target was executed. Before returning
to the main point of this section, we’ll mention one more aspect of this. Let’s modify the previous
project file a bit; refer to the following:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>

<Email>sayed.hashimi@gmail.com</Email>
</PropertyGroup>
<PropertyGroup>

<Email>Sayed I. Hashimi [$(Email)]</Email>
</PropertyGroup>
<Target Name="EmailAdmin">

<Message Text="Emailing: $(Email)"/>
</Target>

<Target Name="EmailAdmin">
<Message Text="Email sent to : $(Email)"/>

</Target>

</Project>

This is almost the same project file as you saw previously, but the second definition of the
Email property is <Email>Sayed I. Hashimi [$(Email)]</Email>. This property looks like it is
referencing itself! Think of the Email property as a property defined as a class member, such as
in C#. When MSBuild loads this file, it will process the first Email property and set its value. When
the second definition is encountered, it gets the current Email property value and adds to it. To
execute this target, specify >msbuild OverrideEx3.proj /t:EmailAdmin at the command line.
Figure 3-19 shows the result from this execution.

Figure 3-18. Output from the EmailAdmin target

CHAPTER 3 ■ MSBUILD: BY EXAMPLE 67

As you can see from Figure 3-19, overriding targets has the same behavior as overriding
properties. When a target is defined, it will take precedence over any previously defined target
with the same name. Now, you are not likely to override a property or target within the same
file, so you are probably wondering why we are discussing this. The reason is that you may run
into this situation when your project imports other MSBuild project files.

Let’s talk about what happens when you import another MSBuild project file into yours.
When MSBuild starts processing a project file, it will do this in a node-by-node manner, from
the top of your project file to the bottom. When an Import element is encountered, these steps
then take place:

1. The working directory is changed to that of the imported project file.

2. Project element attributes are processed.

3. Project element nodes are processed.

4. The working directory returns to importing the previous value.

The first step is to change the working directory to that of the imported project file—
assuming that it has a different working directory from the current project file, that is. This is
necessary to properly handle any relatively defined import statements, or to resolve locations
of assemblies when the UsingTask element is inserted, within that project file. This change is
not used for item declarations. Let’s move on to the following step.

The next thing after that is for the Project element attributes to be processed. Possible
attributes are DefaultTargets and InitialTargets. If a value is already assigned to DefaultTargets,
then this is ignored; otherwise, it becomes the value of DefaultTargets. If the InitialTargets
attribute is present, then that list of targets will be appended to the current list of InitialTargets.
As mentioned, the DefaultTargets attribute is a list of targets to execute if no target is specified;
this can be valued from only one project file. The InitialTargets attribute is a list of targets to
be executed before any other targets. The value from InitialTargets can be from many differ-
ent source project files.

Following the Project element attribute processing, the child nodes are processed. The
same processing is performed if those nodes were immediate children in the importing file.
Finally, for the last step after processing the child nodes, the directory is changed to its previ-
ous value, and processing on the original file continues. When you import a project file, it is as
if you actually took that file and injected its contents inside of the file that was importing it.
This is true with the exception of the Project element itself, which was previously discussed,
and with issues related to the working directory, which also were previously discussed. How
does this affect reusing elements across project files?

Figure 3-19. Output from the EmailAdmin target

CHAPTER 3 ■ MSBUILD: BY EXAMPLE68

When you reuse elements in project files, you have to be aware of what happens in the case
of a naming conflict. We have discussed the behavior of values overridden in the same file.
Now that you know how project files are imported, we can discuss what happens when project
elements are overridden across project files. The behavior of both is the same; all you have to
remember is that the last element defined is the one that gives the value. Let’s clear this up
with a simple example. The following is the OverrideEx5.proj project file on which you will
invoke MSBuild:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<PropertyGroup>
<DeployURL>http://www.sayedhashimi.com</DeployURL>

</PropertyGroup>

<Import Project="ImportOverride1.targets"/>

<Target Name="PrintDeployURL">
<Message Text="Deployment URL: $(DeployURL)"/>

</Target>
</Project>

This file contains one property, DeployURL, and one target, PrintDeployURL. This file
imports the simple ImportOverride1.targets file, which is as follows:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>

<DeployURL>http://www.sedodream.com</DeployURL>
</PropertyGroup>

</Project>

This file simply defines the DeployURL property—the same one defined in the importing
project file. You can find the value of this property by executing the PrintDeployURL target. What
value do you expect to be printed? Let’s find out by executing the PrintDeployURL target by
using >msbuild OverrideEx5.proj /t:PrintDeployURL at the Visual Studio command prompt.
Figure 3-20 shows the output from this execution.

Figure 3-20. Output from the PrintDeployURL target

CHAPTER 3 ■ MSBUILD: BY EXAMPLE 69

As you can see, the value from the ImportOverride1.target file was used instead of the
value defined inside the OverrideEx5.proj file. Is this what you expected? This value is used
because it was encountered after the first value of DeployURL. Essentially, a project file was
processed with the following contents:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>

<DeployURL>http://www.sayedhashimi.com</DeployURL>
</PropertyGroup>

<PropertyGroup>
<DeployURL>http://www.sedodream.com</DeployURL>

</PropertyGroup>
<Target Name="PrintDeployURL">

<Message Text="Deployment URL: $(DeployURL)"/>
</Target>

</Project>

In the previous snippet, the import statement was replaced with the contents of
ImportOverride1.target, stripping away the Project element, of course. This is exactly how
MSBuild will treat your imported files. If the import statement had been before the DeployURL
declaration, then the value http://www.sayedhashimi.com would have been used instead. This
behavior is the same for targets that are overridden. You can give it a shot on your own to ver-
ify this. If you are importing files and you have properties or targets that you must ensure are
defined as is, then you should place them after all import statements. When you execute tar-
gets on that file, then you can be sure you are using the definition that you intend. If that file is
imported into other files, then you can’t be so sure, but you could throw an error if that condi-
tion exists.

To summarize, when you share project files, be careful where you place your import state-
ments, and always be aware of how MSBuild will treat them. A good method to mitigate the risk
of wrongfully overridden targets is to place hooks into your targets to be overridden instead of
overriding the target itself. For instance, Visual Studio provides the BeforeBuild and AfterBuild
targets that are empty. Their sole purpose is to be overridden by you. You can employ a similar
strategy at your organization. Another method is to use naming conventions; for instance, targets
that exist for the sole purpose of being overridden could start with an underscore (_) character.

Dealing with MSBuild Errors
As you create new MSBuild targets, you are bound to encounter situations where errors occur.
How should you deal with errors, and more important, how can you protect the integrity of the
build when one occurs? MSBuild has two elements related to errors: the OnError element and
the Error element. OnError specifies what to do in the case of an error, that is, what targets to
execute. The Error call actually throws an error and calls any registered error-handling
mechanisms. Let’s examine the simple case of handling an error. Refer to the following
SimpleError.proj file:

CHAPTER 3 ■ MSBUILD: BY EXAMPLE70

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<Target Name="ThrowError">

<Error Text="Error in ThrowError target"/>
<OnError ExecuteTargets="MessageErrorHandler"/>

</Target>

<Target Name="MessageErrorHandler">
<Message Text="An error has occurred, build will be halted"/>

</Target>
</Project>

In this project file, you have two targets: one that throws the error, ThrowError, and one
that handles errors, MessageErrorHandler. Previously we mentioned that targets can have error
handlers associated with them. The OnError element creates this association. This element has
only two possible attributes: ExecuteTargets and Condition. The ExecuteTargets attribute is
a semicolon-separated list of targets to execute in the case of an error. These targets will be
executed in the order they are defined. The Condition attribute is the same here as it is for every
other MSBuild element. If the condition is true, then the error handler listed in ExecuteTargets
will be registered; if not, then they won’t. Now we’ll demonstrate the execution of the ThrowError
target by invoking it with >msbuild SimpleError.proj /t:ThrowError. Figure 3-21 shows the
output from executing this target.

From Figure 3-21 you can see that the ThrowError target was invoked and an error
was thrown. Following this, the MessageErrorHandler was invoked to deal with the error. From
the output you can see the following line: C:\MSBuild\MSBuildExamples\ErrorExamples\
SimpleError.proj(3,9): error : Error in ThrowError target. This tells you four facts:

The file that the error occurred in: SimpleError.proj

Where in that file it occurred: (3,9) = Line 3, position 9

What type of error it was: error (more on this in a bit)

The error message: Error in ThrowError target

Figure 3-21. Output from the ThrowError target

CHAPTER 3 ■ MSBUILD: BY EXAMPLE 71

When the error is logged, you can use this information to determine what caused it and
how to resolve it. Let’s quickly examine the full syntax for the Error element before proceed-
ing. The Error element has five attributes, as summarized in Table 3-4.

Table 3-4. Error Element Attributes

Name Description

Text Text that is sent to the error handler. If this is not present, then there will be
no location information attached with the error; that is, you won’t know where
in the project file to start looking.

Code This determines the type of error and will be sent to the logger. See the following
example.

Condition Condition to determine whether to raise the error.

ContinueOnError If this is true, then the error will be converted to a warning, and the build will
continue.

HelpKeyword A help keyword that will be sent to the logger.

We will demonstrate how to use the Code attribute in the next error-handling example.
The previous example was simple but also usable for small projects. For larger, team-based
applications, you may want to have a more flexible approach to error handling. For a better
example, see the following Error1.proj project:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<Import Project="ErrorHandler.targets"/>
<PropertyGroup>

<ErrorEmails>$(ErrorEmails);deployError@sedodream.com</ErrorEmails>
</PropertyGroup>
<!-- Uncomment for normal execution
<PropertyGroup>

<WebURL>sedodream.com</WebURL>
</PropertyGroup>
-->

<Target Name="DeployToWebServer">

<Error Text="Unable to connect to webserver" Code="Deploy" ➥

Condition=" '$(WebURL)' == '' "/>
<!--

contents to deploy to your Web server here
-->
<Message Text="Deployed project to Project $(MSBuildProjectName) ➥

to webserver at: $(WebURL)"/>

<OnError ExecuteTargets="$(ErrorHandlers)"/>
</Target>

CHAPTER 3 ■ MSBUILD: BY EXAMPLE72

<Target Name="ProjectErrorHandler">
<Message Text="An error has occurred, build stopped."/>

</Target>

</Project>

This project has two targets, one property, and one import statement. As for the two targets,
one is for execution, and the other is for error handling. The property defines the ErrorEmails
value. The idea of the imported file is that you could have a project file, or set of files, that every
project in your organization will import. These imported files could contain the standard
error-handling mechanisms. The ErrorHandler.targets file is as follows:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>

<ErrorHandlers>
ProjectErrorHandler;
SolutionErrorHandler;
ErrorLogger;
ErrorMailer;

</ErrorHandlers>
<ErrorEmails>errorHandler@sayedhashimi.com</ErrorEmails>

</PropertyGroup>

<Target Name="SolutionErrorHandler">
<Message Text="An error has occurred in the solution; build failed"/>

</Target>
<Target Name="ErrorLogger">

<Message Text="A build error has occurred and has been logged"/>
</Target>
<Target Name="ErrorMailer">

<Message Text="An error has occurred and has been emailed ➥

to: $(ErrorEmails)"/>
</Target>

</Project>

The ErrorHandler.targets file has three targets that relate to the error handling defined and
two properties. The targets don’t do anything interesting, so we will not discuss them. Let’s look
at the properties defined here and see how they provide the flexibility for which you are looking.
The two properties defined here are ErrorHandlers and ErrorEmails. The ErrorHandlers property
contains a semicolon-separated list of targets. This property is used in the OnError element to
specify which targets to execute in the case of an error. From the four targets in that property,
three are defined in the ErrorHandler.targets file; the other is implemented in the Error1.proj
file. Because of this technique, you can completely change the way errors are handled across
the organization without actually changing a single source project. Now you will move on to
the remaining property.

The ErrorEmails property defined in the ErrorHandler.targets file provides an e-mail
address that should be notified when an error occurs. Now let’s look at how the Error1.proj
file adds to this; the snippet is as follows:

CHAPTER 3 ■ MSBUILD: BY EXAMPLE 73

<PropertyGroup>
<ErrorEmails>$(ErrorEmails);deployError@sedodream.com</ErrorEmails>

</PropertyGroup>

In this file, you are redefining the ErrorEmails property based on the previous definition
of it. You are actually appending the e-mail deployError@sedodream.com to the list of e-mails to
be notified in case of errors. Once again, if your organization needed to change who received
e-mail notifications of errors, this could happen in one place as opposed to inside every project.
To demonstrate the error handling, execute the DeployToWebServer target on the Error1.proj
project file using the following command: >msbuild Error1.proj /t:DeployToWebServer.
Figure 3-22 shows the output.

From this output you can see that the error was raised inside DeployToWebServer. This was
raised from the <Error Text="Unable to connect to webserver" Code="Deploy" Condition="
'$(WebURL)' == '' "/> element. This error was raised because the WebURL property has not been
initialized. From this error you can see that the targets ProjectErrorHandler, SolutionErrorHandler,
ErrorLogger, and ErrorMailer were executed in that order. This is the order in which they were
defined in the ErrorHandler.targets file. Notice in this element the use of the Code attribute;
once used, this information is passed to the loggers and may assist with determining how the
error occurred. In the output the error type is error Deploy. Many organizations will use only
integer values for this field, but you can use any string, as shown here.

When you approach a build, you must be careful to avoid errors and to easily detect when
errors have occurred. You can use the MSBuild error-handling mechanisms to assist in this critical
task. The previous target simply exposed the MSBuild error-handling mechanisms. This sample
has shown how your organization can approach MSBuild error handling to increase flexibility
and simplicity.

Figure 3-22. Output from DeployToWebServer target

CHAPTER 3 ■ MSBUILD: BY EXAMPLE74

Summary
In the previous chapter, we introduced some fundamental concepts of MSBuild and showed
some examples of how you can use MSBuild. In this chapter, we expanded on that knowledge
extensively by showing a series of examples. The aim of this chapter was to clarify the topics
discussed previously and to introduce many new ideas. As is the case with many other tech-
nologies, MSBuild is best learned by trying the concepts as you learn them.

75

C H A P T E R 4

■ ■ ■

Extending MSBuild

In the previous chapters, we presented the features of MSBuild that enable you to write your
own MSBuild project files. In this chapter, we will build on that knowledge by providing practi-
cal samples that you can reuse in your projects. MSBuild has two main extensibility points:
custom loggers and custom tasks. We will cover these two points in great detail in this chapter.
We will explain what it takes to create your own new logger and plug it into your build. Follow-
ing this, we will show how to create a custom task to execute NUnit test cases contained in your
built assemblies.

The XML logger will demonstrate how easy it is to truly customize MSBuild logging to suit
the needs of your applications. Creating a new logger for MSBuild is actually a simple task but
can be very useful. With the creation of the XML logger, it is now easy to load the contents of
the log and allow an application to examine how the build is executed. If you are developing
applications in larger teams with complicated build requirements, you may want to create
a logger that will log build information directly into a database, as opposed to logging to a file.

The task, NUnitTask, provided in this chapter will examine the assemblies for the project
being built and execute any test cases contained within them. With this task we will demonstrate
how to write custom tasks and targets for use in your build process. When creating these, you
must allow for easy integration and incremental building. This task will demonstrate both of
these very important ideas.

Logging with MSBuild
In recent years, runtime logging has received much attention. This is because of its recogni-
tion as an invaluable resource to determine what happened during the course of execution.
When an error occurs, an automated build is similar in many ways to an error occurring when
an application is in use. Namely, it is difficult to determine what went wrong without a record
of events. In this chapter’s build, this record will be your build log. In contrast to a deployed
application, a log for a successful build is helpful as well. This raises the question, how should
you log with MSBuild?

MSBuild ships with two standard loggers, the console logger and the file logger; the for-
mer simply logs messages to the console, and the latter logs messages to a file you specify. By
default, only the console logger will be used unless explicitly disabled with the /noconsolelogger
command-line parameter (the short version is /noconlog). To specify any additional loggers, you

CHAPTER 4 ■ EXTENDING MSBUILD76

use the /logger switch (the short form for this is /l). Let’s see how you can use the file logger.
This sample uses the DotNetFreeCell project that is available on Gotdotnet.com. This is a VB
.NET version of the popular Windows FreeCell game. This solution, DotNetFreeCell, is com-
posed of two projects. Those projects are DotNetFreeCell and its dependent CardLib project.
To build this project, let MSBuild consume the solution file with >msbuild DotNetFreeCell\
DotNetFreeCell.sln /t:Build; alternatively, you can omit the target specification, and Build
will still execute. For this to work correctly, you need to execute this command from the folder
that contains the DotNetFreeCell directory. Upon executing this build, you will see that a lot of
information is being passed to the console. How can you redirect this to a file as well?

As previously mentioned, to add loggers, you use the /logger parameter. The syntax for
the /logger switch is as follows:

[<Logger class>,]<logger assembly>[;<logger parameters>]

where Logger class is FileLogger and is contained in the Microsoft.Build.Engine assembly.
We will discuss the parameters in a bit. The full syntax in this case is as follows:

>msbuild DotNetFreeCell\DotNetFreeCell.sln ➥

/l:FileLogger,Microsoft.Build.Engine;verbosity=detailed;append=true; ➥

logfile=FreeCell-Build.log

From these arguments you can see that you are using the Microsoft.Build.Engine.
FileLogger class. The logger parameters part is an optional list of key/value pairs to be sent
to the logger. This is a generic construct and is determined by the logging class being used. In
this case, the example is using the FileLogger, so what are the possible parameters for it?
Table 4-1 lists the available parameters.

Table 4-1. FileLogger Parameters

Parameter Name Default Description

Append false When true, if the file exists, it will be appended to
instead of overwritten

Encoding System dependent Specifies how the log file will be encoded

Logfile msbuild.log Specifies the file to which the log contents will be
written

Verbosity Normal Determines the verbosity for this logger

Table 4-1 includes the name of the parameter, its description, and what the default value
is; in this case, you do not specify a value for it. For example, if you do not specify the value for
Logfile, then the value msbuild.log is used in its place. This logger specification will append
to any existing file named FreeCell-Build.log with the verbosity level set to detailed. The ver-
bosity determines what kind of, and how much, content will be sent to the logger. Five verbosity
levels exist, as summarized in Table 4-2. They are listed from the least amount of logging to
the most.

CHAPTER 4 ■ EXTENDING MSBUILD 77

Table 4-2. Verbosity Levels

Full Name Short name

Quiet q

Minimal m

Normal n

Detailed d

Diagnostic diag

When specifying the verbosity level, you can use either the full name or the short name.
Typically, you will find the Normal verbosity level is sufficient to determine what steps were
taken in the process of the build, but you may elect to decrease or increase the amount depend-
ing on your situation. Now that you know what you need in order to specify loggers at the
command line, you’ll learn how to write your own logger.

Writing a Logger
Writing a new MSBuild logger, and using it, is simple! In this section, we will discuss the require-
ments of a logger, and we will present a new XmlLogger. First we’ll discuss some of the important
players in the MSBuild logging game, as listed in Table 4-3.

Table 4-3. Logger Components

Name Location Description

ILogger Microsoft.Build.Framework The interface that all MSBuild loggers
must implement.

Logger Miscosoft.Build.Utilities This is an abstract class that wraps up the
ILogger interface. This class will handle
the parameters and verbosity for you.

IEventSource Microsoft.Build.Framework This contains all the build events that can
be raised. You will register your event
handlers with this interface.

Various Microsoft.Build.Framework Subclasses of BuildEventArgs are the
BuildEventArgs means that a build message is passed
subclasses to your handlers. You will interact with

these objects to gain insight into the
meaning of the event.

Every MSBuild logger must implement the Microsoft.Build.Framework.ILogger interface.
Logging with MSBuild is all event driven, so as events occur, the interested listeners get notified.
We will discuss this in further detail in a bit. The ILogger interface is simple; it has two methods
and two properties that need to be defined:

void Initialize(IEventSource eventSource);
void Shutdown();
string Parameters{ get; set; }
LoggerVerbosity Verbosity{ get; set; }

CHAPTER 4 ■ EXTENDING MSBUILD78

The MSBuild engine will set the Parameters and Verbosity properties before any events
are fired. Parameters is a string that captures any text parameter passed in to the logger at the
command line. It is left up to the writer of the class what this string looks like and how to parse
it. We will provide you with an abstract base class later in this section that you can use to do
this for you.

The Initialize method will be called before any events have occurred. In this method you
will tell MSBuild which events you are interested in responding. You will do this by registering
event handlers with the eventSource argument. In this method you could also perform any other
steps to properly initialize your logger. The Shutdown method will be called after the build has
completed. Here is where you would free any resources that you are consuming and finish any
necessary processing to properly close down your logger. For instance, if you were writing
a database logger, in Initialize you may ensure that you have a connection to the database
and create some records. In Shutdown you will record all the remaining entries to the database
and close your connection to it. You can register any of the 14 different events that you would
like to handle. Table 4-4 summarizes those events.

Table 4-4. Logger Events

Name Description

AnyEventRaised Raised when any type of build event occurs.

BuildFinished Raised when the build has completed. If you are building many
projects, this will occur at the end of building all of them.

BuildStarted This is raised before the build of any projects starts.

CustomEventRaised Raised when a build triggers a custom event.

ErrorRaised Raised when an error occurs during the course of the build.

MessageRaised Raised when a message is logged.

ProjectFinished Raised after the build for each project completes.

ProjectStarted Raised before each project is built.

StatusEventRaised Raised when a status event occurs.

TargetFinished Raised after the execution of each target.

TargetStarted Raised before the execution of each target.

TaskFinished Raised after the execution of each task.

TaskStarted Raised before the execution of each task.

WarningRaised Raised when a warning event occurs.

For your loggers, you may not be interested in handling certain events; in this case, you
simply don’t register as an event handler for that event. Now that you are familiar with logging
in MSBuild, we’ll show a simple file-based logger, and then we will move on to a more complex
XML logger.

To demonstrate how you accomplish logging with MSBuild, we will cover the SimpleFileLogger
class. We present this class simply for demonstration purposes; if you need a file-based logger,
the Microsoft.Build.Engine.FileLogger is recommended for use. Start by looking at the class
signature, as shown here:

public class SimpleFileLogger : Logger

CHAPTER 4 ■ EXTENDING MSBUILD 79

We stated previously that every MSBuild logger must implement the ILogger interface.
You can see that the SimpleFileLogger does implement this interface; it does so through the
Microsoft.Build.Utilities.Logger class. Another requirement is that a public parameterless
constructor be available. The SimpleFileLogger class has four data members: _verbosity,
_parameters, _fileName, and _messages (the buffer containing all the messages). Refer to the
Initialize method, as follows:

public override void Initialize(IEventSource eventSource)
{

_fileName = "simple.log";
_messages = new StringBuilder();

//Register for the events here
eventSource.BuildStarted += new BuildStartedEventHandler(➥

this.BuildStarted);
eventSource.BuildFinished += new ➥

BuildFinishedEventHandler(this.BuildFinished);
eventSource.ProjectStarted += new ➥

ProjectStartedEventHandler(this.ProjectStarted);
eventSource.ProjectFinished += new ➥

ProjectFinishedEventHandler(this.ProjectFinished);
eventSource.ErrorRaised += new BuildErrorEventHandler(➥

this.BuildError);
eventSource.WarningRaised += new BuildWarningEventHandler(➥

this.BuildWarning);
eventSource.MessageRaised += new BuildMessageEventHandler(➥

this.BuildMessage);
}

This method simply sets the name of the file, initializes the message buffer, and registers
for events with the event source. Notice that it did not register for every event—only the ones for
which it is interested. You can register for as few or as many events as you need. Notice that each
event has its own specific type of handler associated with it; this is because different events have
different information associated with them. For example, when a build error occurs, you’ll be
sent information about the location of the error; however, when a task is started, you will not
be sent any location information.

Now that you have seen the Initialize method, we will cover the Shutdown method and
then move on to the event handlers. Here’s Shutdown:

public override void Shutdown()
{

System.IO.File.WriteAllText(_fileName, _messages.ToString());
}

This method simply writes the contents of the buffer to the file. This is a pretty simple logger;
a much better way to store all the messages in memory would be to periodically write the mes-
sages out to the file being logged to.

Now you will examine a few of the event handlers. All of the event handlers from this class
look similar; the protected method AppendLine is as follows:

CHAPTER 4 ■ EXTENDING MSBUILD80

protected void AppendLine(string line)
{

_messages.AppendLine(line);
}

This method simply appends the passed-in line to the in-memory buffer containing all
the messages, like so:

void BuildFinished(object sender, BuildFinishedEventArgs e)
{

_messages.AppendLine("BuildFinished" + e.Message);
}
void ProjectStarted(object sender, ProjectStartedEventArgs e)
{

_messages.AppendLine("ProjectStarted" + e.Message);
}

Each of these handlers is like the ones shown previously; they simply append the passed-
in message to the file. The following is a sample of the output of this logger. (This sample is
also using the VB DotNetFreeCell project.)

BuildMessage: Building target "Build" completely.
BuildMessage: No input files were specified.
ProjectFinished: Done building project "DotNetFreeCell.vbproj".

If you wanted to use this logger along with the FileLogger, you could accomplish this by
using the following command:

>msbuild DotNetFreeCell\DotNetFreeCell.sln ➥

/l:SimpleFileLogger,.\FileLoggers.dll ➥

/l:FileLogger,Microsoft.Build.Engine;logfile=test.log

This assumes that SimpeFileLogger is in an assembly called FileLoggers.dll located in
the same directory that is invoking msbuild.exe. Notice how you can specify more than one
logger to be used by using the /l switch multiple times. This logger is not very useful, because
you cannot customize its output or change the name of the file to which it will write.

LOG CONTENTS

Here is a portion of the SimpleFileLogger’s log file:

BuildMessage: Building target "CoreCompile" completely.
BuildMessage: Output file "obj\Debug\CardLib.xml" does not exist.
BuildMessage: Using "Vbc" task from assembly "Microsoft.Build.Tasks, ➥

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a".
BuildMessage: Command:

For a better example of a logger that you may actually write, you will examine XmlLogger.
This is a logger that will log all the events to an XML file. This is particularly useful for situations

CHAPTER 4 ■ EXTENDING MSBUILD 81

Figure 4-1. Class diagram from Visual Studio

when you need to programmatically determine what steps were taken during a build. Or if you
wanted to place the results on a Web page, you could simply write an XSL Transformation (XSLT)
to create the HTML for you.

With this XmlLogger, you’ll find the base class, FileLoggerBase, that will handle many
common tasks to file-based loggers. Figure 4-1 shows the class diagram as created by Visual
Studio. You can view class diagrams by right-clicking the project in the Solution Explorer and
selecting View Class Diagram.

From this diagram you can see that now there is an abstract class called FileLoggerBase.
This class will take care of reading common parameters from the command line, and you can
focus on the logging. Here is a sample of the XmlLogger’s output:

<MSBuild>
<Build Started="11/18/2005 9:39:44 PM" Verbosity="Normal" ➥

Finished="11/18/2005 9:39:44 PM" Succeeded="False">
<Project Name="C:\MSBuild\DotNetFreeCell\DotNetFreeCell\ ➥

DotNetFreeCell.sln" Message="Project "DotNetFreeCell.sln ➥

" (default targets):" Started="11/18/2005 9:39:44 PM" ➥

Finished="11/18/2005 9:39:44 PM">
<Target Started="11/18/2005 9:39:44 PM" Name= ➥

"ValidateSolutionConfiguration" Message="Target ➥

"ValidateSolutionConfiguration" in project " ➥

CHAPTER 4 ■ EXTENDING MSBUILD82

DotNetFreeCell.sln"" Finished="11/18/2005 9:39:44 PM" ➥

Succeeded="True">
<Task Started="11/18/2005 9:39:44 PM" Name="Message" ➥

Finished="11/18/2005 9:39:44 PM" />
</Target>

...
</MSBuild>

Each task appears under the target that executed it, and likewise, targets appear under
their respective projects.

Now you’ll learn how you can accomplish this. First you will examine the FileLoggerBase
class, which is responsible for making the common tasks easy for the log writer. Its primary
purpose is to handle the parameters and to parse out those that it knows. Table 4-5 lists the
parameters it knows.

Table 4-5. FileLoggerBase Known Parameters

Full Name Short Name Description

Append A This will determine whether the file will be appended to.

Logfile L This will determine the file to which the log will be saved.

ShowSummary S This will determine whether a summary should be shown
as well as normal output.

Verbosity V This will determine the verbosity level of the logger.

You can specify these parameters using either the full name or the short name, and they are
case-insensitive. If you create a subclass of this, make sure to not conflict with these names. I’ll
also show you how to retrieve the values for the parameters momentarily. The first step MSBuild
will take after creating your logger is to set the Verbosityproperty, and then it will set the Parameters
value. The Parameters value is the complete string following the specification of your logger.
MSBuild does not attempt to parse this string in any way; following this, the Initialize method
is invoked. Knowing this, refer to the Initialize method provided in the FileLoggerBase class:

public override void Initialize(IEventSource eventSource)
{

InitializeParameters();
}

protected void InitializeParameters()
{

this._paramaterBag = new Dictionary<string, string>();
if (this.Parameters == null || this.Parameters.Length <= 0)

return;

foreach (string paramString in this.Parameters.Split(';'))
{

string[] keyValue = paramString.Split('=');
if (keyValue == null || keyValue.Length < 2)

continue;

CHAPTER 4 ■ EXTENDING MSBUILD 83

this.ProcessParam(keyValue[0].ToLower(), keyValue[1]);
}

}

The Initialize method will eventually call ProcessParam, and this method will look for
the recognized parameters and set their values if they are present. In your subclasses, you can
access the well-known parameters through the properties of the FileLoggerBase class, and if
you have other parameters, simply call the GetParameterValue method to get the value for that
parameter.

Now that you know how to use the FileLoggerBase class, you’ll look at how the XmlLogger
does its work. If you would like to dive into the code, it is available to you in the Source Code
section of the Apress Web site (http://www.apress.com). First we will discuss the following:

• How to handle verbosity

• The important elements of different build events

• How to deal with problems

How verbosity is treated is entirely out of the hands of MSBuild and in the hands of the
log writer. If a logger is registered for an event, then it will receive that event, without regard to
its verbosity level. This has its benefits as well as its drawbacks. It is good because you are able
to determine exactly what Detailed verbosity means to you, but it is a drawback because you
are forced to implement it as well. To demonstrate this, refer to the BuildStarted event handler
shown here:

void BuildStarted(object sender, BuildStartedEventArgs e)
{

XmlElement buildElement = _xmlDoc.CreateElement("Build");
_rootElement.AppendChild(buildElement);
buildElement.Attributes.Append(CreateStartedAttribute(➥

e.Timestamp));
buildElement.Attributes.Append(CreateAttribute("Verbosity", ➥

this.Verbosity.ToString()));

if (this.Parameters != null && ➥

IsVerbosityAtLeast(LoggerVerbosity.Detailed))
{

XmlElement paramElement = _xmlDoc.CreateElement(➥

"LoggerParameters");
buildElement.AppendChild(paramElement);
foreach (string current in this.Parameters.Split(➥

';')
{

XmlElement currentElement = _xmlDoc.CreateElement(➥

"Parameter");
currentElement.InnerText = current;
paramElement.AppendChild(currentElement);

}
}

CHAPTER 4 ■ EXTENDING MSBUILD84

_buildElements.Push(buildElement);
_buildTypeList.Push(BuildType.Build);

}

This handler will create a new Build element and attach it to the MSBuild element. It will
always add two attributes, one for the start time and one describing the current verbosity level.
Following this, if the verbosity is set to at least Detailed, then an element will be created that
contains all of the logger parameters and their values.

The Microsoft.Build.Utilities.Logger abstract class provides the IsVerbosityAtLeast
method. You can use this to help you determine what to log. An event that happens quite fre-
quently is a message event. The message event includes an Importance value that is associated
with it. Based on this and the verbosity, you can determine whether you would like to log the
message. Now let’s examine the second bullet point.

What are some of the useful elements of different build event arg objects? We noted previously
that each event has its own distinct class, such as BuildStartedEventArgs or BuildMessageEventArgs.
Each of these classes inherits from the abstract Microsoft.Build.Framework.BuildEventArgs class.
This class has five public properties: Message, Timestamp, HelpKeyword, ThreadId, and SenderName.
Most of the subclasses have some important properties that you can use in your loggers, as
listed in Table 4-6. The names of the properties are self-descriptive.

Table 4-6. Some Properties from the BuildEventArg Subclasses

Name Property

BuildErrorEventArgs File
BuildWarningEventArgs Code

ColumnNumber
LineNumber
HelpKeyword

BuildMessageEventArgs Importance

ProjectStartedEventArgs ProjectFile
ProjectFinishedEventArgs

TargetStartedEventArgs ProjectFile
TargetFinishedEventArgs TargetFile

TargetName

TaskStartedEventArgs ProjectFile
TaskFinishedEventArgs TaskName

TaskFile

BuildFinishedEventArgs Succeeded
ProjectFinishedEventArgs
TargetFinishedEventArgs
TaskFinishedEventArgs

If you are going to create your own events, then you will use the CustomEventRaised event
and pass it a subclass of CustomBuildEventArgs. In this case you will know what extra informa-
tion is contained in those classes.

CHAPTER 4 ■ EXTENDING MSBUILD 85

Now that you know how to create a new MSBuild logger, you need to know how to deal with
problems when they occur. If your logger is going to throw an exception, then it will not only
fail the build but will also do so in an ugly fashion. When this happens, sometimes you may not
even be given details about what went wrong. These problems can sometimes be difficult to
locate. The method to deal with this is to catch exceptions that may be thrown and rethrow them
as a Microsoft.Build.Framework.LoggerException; as a best practice when rethrowing exceptions,
set the inner exception to the original one. The LoggerException is a special exception that
MSBuild will handle differently from other exceptions, and it is the preferred mechanism to
signal logger failures. When a LoggerException is raised, the build will still fail, but you will be
provided with more details about why it failed. You can even specify an error code and keyword
on the exception.

This section has demonstrated how you can create your own MSBuild loggers. MSBuild
loggers are easy to create and can be powerful. We have shown how to register for different
event types, how to implement verbosity, and how to properly construct your loggers. If you
still think that writing loggers can be difficult, all you have to do is implement one, and you’ll
be convinced otherwise. Now we will move forward with some other elements that are neces-
sary for automated building. We will start with unit testing.

Using NUnit and MSBuild
Visual Studio 2005 introduced a unit testing framework. This framework allows you to create
and execute unit tests for your projects. This framework is included only in certain editions of
Visual Studio; for more information about specific versions, see http://msdn.microsoft.com/
vstudio/. Because of this, we will not cover this framework; instead, we will cover the NUnit
unit-testing package. NUnit is an open source unit-testing framework that is available at
http://www.nunit.org. In this section, we will introduce NUnit, and we will provide an MSBuild
task that can be used to examine assemblies and execute any NUnit test contained within them.

We will assume that most readers have heard of unit testing and have even created some
unit tests previously. Because of this, we will only briefly introduce unit testing and NUnit before
we begin discussing how you can integrate it into your build process. Unit testing is a means
to test a small component, or unit, of code. The idea behind a unit test is to write the test case
and execute the tests alongside the build. Once you write a unit test that passes, it should con-
tinue to pass. Should it fail, you need to examine your changes, or perhaps the test case, for any
harmful content.

Introducing NUnit
To write and execute NUnit test cases, you must download and install the NUnit framework.
The remainder of this section will assume that this step has been completed. Before we get to
integrating MSBuild with NUnit, let’s first see how you can write some NUnit test cases. Follow
these steps to create a simple NUnit solution that you can write some unit tests within:

1. Create a new project named NUnitEx1 with Visual Studio.

2. Add nunit.framework as a reference to this project.

3. Change the name of the class to NUnitEx1.cs.

CHAPTER 4 ■ EXTENDING MSBUILD86

Figure 4-2. NUnitEx1 Solution Explorer

Now you should have something in the Solution Explorer that looks like Figure 4-2.

If NUnitEx1.cs is not already open, then open it. We will show how to create some simple
test cases within it and execute them using the NUnit executor. To write NUnit test cases
within this class, you will need to add the using NUnit.Framework statement at the top of this
file. NUnit is driven by reflection and attributes; if it is given a set of assemblies, it will examine
those assemblies looking for classes that contain NUnit tests. When those classes are found, it
will in turn look for and execute individual test cases contained in those classes. To signal that
a class contains test cases, you must place the TestFixture attribute on the class and, to show
that a method is a test case, add the Test attribute to it. NUnit uses a few other attributes; we
will discuss some of those in a bit.

In the NUnitEx1.cs file, add the TestFixture attribute to the class. NUnit test cases have
a few requirements:

• They must have a Test attribute.

• They must be a public method.

• They must return void.

• They must be parameterless.

In the NUnitEx1.cs class, create a method called TestStringEqual that meets the previous
requirements. NUnit, like most other unit testing frameworks, uses assertions to determine what
the expected behavior is. The NUnit.Framework.Assert class is used for this purpose, and each
assertion method will contain an expected and actual value, a condition to check, or a refer-
ence to an object. Depending on the method called, a check will be generated against them to
ensure that the expected value was produced during the test. You have six ways to invoke an
assertion, as listed in Table 4-7.

CHAPTER 4 ■ EXTENDING MSBUILD 87

Table 4-7. NUnit Assertions

Name Description

AreEqual Determines whether the expected value and actual value is the equal. This uses
the System.Object.Equals method as opposed to the == operator.

AreSame Compares the expected value to the actual value by the reference. This uses the
System.Object.ReferenceEquals method to determine whether these two
objects are the same instance.

IsFalse Checks to ensure the condition evaluates to false.

IsTrue Checks to ensure the condition passed in evaluates to true.

IsNotNull Checks to make sure the object passed in is null.

IsNull Checks to ensure the object passed in is null.

From the test case you created earlier, you can include a simple assertion. Refer to the fol-
lowing method:

[Test]
public void TestStringEqual()
{

string testString = "Hello NUnit";
Assert.AreEqual(testString, testString);

}

In this method, you have created a string, testString, and passed it into the Assert.AreEqual
method for both the expected value and the actual value. When the NUnit engine passes over
this class, it will notice that it contains test cases, and it will execute the TestStringEqual method
inside it. Since the assertion passes, so should the test case. You’ll now add a few more simple
test cases, and then you’ll run the test cases using NUnit’s GUI runner. This is the class with
a few more passing tests:

[TestFixture]
public class NUnitEx1
{

[Test]
public void TestStringEqual()
{

string testString = "Hello NUnit";
Assert.AreEqual(testString, testString);
Assert.AreSame(testString, testString);

}
[Test]
public void TestIntEqual()
{

int intValue = 5;
Assert.AreEqual(intValue, intValue);

}
[Test]
public void IsTest ()

Figure 4-3. NUnit GUI runner

{
Assert.IsFalse(false);
Assert.IsTrue(true);

}
public void NotATest()
{ //will not be executed by NUnit..no Test attribute present

Assert.IsTrue(false);
}

}

This class contains four methods, but only three are test cases. The last method, NotATest,
will not be recognized as a test case because it is missing the required Test attribute. At this
point you can build this assembly and move on to executing it. Now, to execute these test cases
to make sure they all pass, you have primarily two options; you can use the NUnit GUI runner
or the command-line runner. For demonstration purposes, we will use the GUI runner.

When you installed NUnit, a shortcut to the GUI runner should have been installed in the
NUnit directory. Start the GUI runner by using this shortcut. You should see the window shown
in Figure 4-3.

CHAPTER 4 ■ EXTENDING MSBUILD88

CHAPTER 4 ■ EXTENDING MSBUILD 89

From this point you can run these tests by loading the assembly into the NUnit GUI runner.
To do this, select File ➤ Open, and open the assembly that was just built. Following this, you will
see the window shown in Figure 4-4.

Figure 4-4. NUnit GUI runner with NUnitEx1 assembly loaded

In Figure 4-4, the Tests pane shows the loaded assembly and test cases that will be executed
when the test is run. Notice that NotATest is not included in this list. To run this test, click the
Run button. After running the tests, you’ll notice all the test cases have a green circle to the
right of their names. This signifies that the tests passed. A red circle represents a failing test,
and a yellow circle indicates a skipped test.

In addition to creating test cases, NUnit has a much deeper capability; you have only
scratched the surface. The emphasis of this section is not to teach you NUnit but to show you
how you can integrate NUnit tests into your build process. With that said, we will now show
how you can do exactly that.

NUnit MSBuild Task
The ideal case in integrating test cases into your code would be to simply write test cases and
then have them executed when you are building your project or solution. Currently with NUnit,
you build your application and then test it with two distinct tools. With MSBuild, you can inte-
grate these tools and create a seamless build that will also run test cases over the latest version
of code written. To do this, you need to write a NUnit MSBuild task. In this section, we will dis-
cuss how this was written and, more important, how you can use this in your projects.

CHAPTER 4 ■ EXTENDING MSBUILD90

In Chapter 3, we covered what was necessary to write your own tasks. We showed a few
basic examples of tasks, but they were simple and just for demonstration purposes. In this
section, we will introduce a task that you will find both useful and easy to integrate into your
build process. This task is NUnitTask; it will examine the output assemblies of your project and
execute any NUnit test cases contained within them. The three main components of NUnitTask
are as follows:

• The C# file, NUnitTask.cs, that contains the task definition

• The event collector that will collect information about test execution

• The NUnit.targets file that wraps the task into a target for ease of use

We will cover the first two items and then move on to show the NUnit.targets file. The
purpose of the NUnit.targets file is to help provide everything you need to easily integrate the
task into your build process. Now let’s look at the NUnitTask.cs file that defines the NUnitTask task.

NUnitTask is a generic task that will simply execute NUnit test cases that are contained in
the assemblies passed to it. It will also generate some summary information made available as
output properties, and it will write a log file to a location specified by the caller. In Table 4-8,
you will find the names of all the inputs along with a description.

Table 4-8. Inputs to the NUnitTask

Input Name Description

Assemblies The list of assemblies that will be examined for NUnit test cases. If any
are found, they will be executed.

LogFile The location to which the log file will be written.

ContinueAfterError If this is true, then test cases in all assemblies will be executed even if
errors occur. Otherwise, after an error occurs, untested assemblies will
not be tested.

CacheDirPath NUnit requires a temporary directory while it is processing; this is the
path to where you would like that temporary directory located.

All of these inputs are required inputs; the most important input is the Assemblies property.
If there are any classes with NUnit test cases contained in these assemblies, then they will be
executed when this task is executed. If you had an automated build process, you are most
likely going to want to send the log file to your build engineers after this task has completed.
This task generates outputs as well, as summarized in Table 4-9.

Table 4-9. Outputs of NUnitTask

Output Name Description

NumExecutedTests The number of test cases executed during this invocation of the task

NumIgnoredTests The number of test cases ignored during this invocation of the task

NumFailedTests The number of test cases that failed during the testing

These properties simply provide summary information about how the build concluded.
This is information related to the testing process, if provided, via logging statements and via

CHAPTER 4 ■ EXTENDING MSBUILD 91

the log file that the task generates. Of these three properties, the most important is NumFailedTests.
After the testing has completed, you can examine its value and determine how you should proceed
with the build. Now you will examine how the NUnitTask task was written.

Previously, we gave examples of how to write MSBuild tasks; in this section we will briefly
show how the NUnitTask task was written to give you a feel for the code base and to review. Some
of the code for the NUnitTask task was based on code that you can find in the NUnit project, which
is an open source project. All MSBuild tasks have to inherit from the Microsoft.Build.Framework.
ITask interface. The NUnit task does this by having Microsoft.Build.Utilities.Task as its base
class. You can observe this from the following class signature:

public class NUnitTask : Task

Inheriting from the Microsoft.Build.Utilities.Task class is the preferred method of
implementing the Microsoft.Build.Framework.ITask interface, as opposed to directly imple-
menting the interface itself.

An MSBuild task can have inputs and outputs; those are the ways your target file can pass
data back and forth between the tasks. Inputs and outputs translate to public properties in the
task definition class. These are called parameters. Two categories of parameters exist: scalars
and vectors. A scalar parameter is a single value, and a vector is a list of values. An example of
a scalar parameter is a string, and an example of a vector is an array of strings. Figure 4-5 sum-
marizes the supported parameter types.

When using these types for inputs and outputs for tasks, you don’t have to worry about
building the objects. MSBuild will take care of this for you. Using an ITaskItem parameter is
good for when you are referencing items because they have a rich feature set that can be used.
You have access to the well-known metadata and any custom metadata that exists for the item.
For example, see the following Assemblies input for NUnitTask:

[Required]
public ITaskItem[] Assemblies
{

get
{

return this._assemblies;
}
set
{

Supported Task Parameter Types

Scalar Parameters
ITaskItem
string

 Any Value Type

Vector Parameters
ITaskItem[]
string[]

 Array of Any Value Type

Figure 4-5. Supported task parameter types

CHAPTER 4 ■ EXTENDING MSBUILD92

this._assemblies = value;
}

}

As you remember from Chapter 3, required task inputs have the Required attribute. This
will guarantee that the property has been set before the task is invoked. The Assemblies
property has both a get and a set, but only the set is required for MSBuild. Sample output,
NumExecutedTests, is as follows:

[Output]
public int NumFailedTests
{

get
{

return this._numTestsFailed;
}

}

Since NumFailedTests is an output, it has the Output attribute attached to it. This signals to
MSBuild that this property should be made available to the calling MSBuild target file. Another
key element in an MSBuild task is the Execute method; this is the method that is called to run
the task. The signature for the Execute method is public override bool Execute(). The Execute
method in the NUnitTask will set up the NUnit environment and execute all the necessary tests.
Also, it will generate a log file containing the results, as well as logging them. To get a better feel
for how the task executes, you may have to look at the code that is available in the Source Code
section of the Apress Web site (http://www.apress.com). Now that you have an idea how NUnitTask
works, we’ll cover how you can put it to use. We will show how to do this with the NUnit.
targets file.

The purpose of the NUnit.targets file is to wrap up the NUnitTask file for ease of use and
to increase portability across projects. The NUnit.targets file has two main sections—one
related to executing the test cases and the other related to cleaning the project. We will first
discuss the main section, which is the section related to executing the test cases. This section
defines four items and one property, as follows:

<ItemGroup>
<!--

This is the location of the NUnit MSBuild task and
all of its dependencies. This could come from an
environment variable if desired

-->
<TaskBin Include="C:\MSBuild\TaskBin"/>

<!-- NUnit requires a directory to temporarily
store files; this is that directory -->

<NUnitCache Include="$(OutputPath)\cache\"/>
<!-- Name of the log file for successful builds -->
<NUnitLog Include="$(OutputPath)\NUnit.log"/>
<!-- Name of the log file for unsuccessful builds -->
<NUnitFailLog Include="$(OutputPath)\NUnit.fail.log"/>

</ItemGroup>

CHAPTER 4 ■ EXTENDING MSBUILD 93

<PropertyGroup>
<!--
This is the list of targets that will be executed, in order,
if an error occurs during the course of the NUnit testing.
You can extend this property in other project files in
a similar fashion that the CleanDependsOn is overridden below.

-->
<NUnitErrorHandlers>
HandleNUnitError

</NUnitErrorHandlers>
</PropertyGroup>

<!-- This tells MSBuild where it can locate the task code -->
<UsingTask AssemblyFile="@(TaskBin->'%(FullPath)')\MSBuildTasks.dll" ➥

TaskName="NUnitTask"/>

At the bottom of the previous segment, you will find the UsingTask declaration. This state-
ment tells MSBuild where to find the definition for the task to be used. For any custom tasks, this
element is required to help locate the task definition. Table 4-10 describes the attributes of
this element.

Table 4-10. UsingTask Attributes

Attribute Name Description

AssemblyFile The path to the assembly file that contains the class named TaskName. Either
AssemblyFile or AssemblyName is required to be present. Only one can be used.
This path can be either relative or absolute. If a relative path is used, then it is
evaluated relative to the current directory. This causes the assembly to be loaded
with the System.Reflection.Assembly.LoadFrom method.

AssemblyName The name of the assembly that contains the class named in the TaskName
attribute. This can be strongly named, but it is not required. Either this attribute
or AssemblyFile is required, but only one can be present. This causes the
assembly to be loaded by the System.Reflection.Assembly.Load method.

TaskName The name of the class that is the MSBuild task to be loaded. If it is possible for
name collisions with other tasks, then this attribute should be specified using
the full namespace; however, this is not required.

You can use two attributes, AssemblyFile and AssemblyName, to specify how the assembly
is loaded. Using the AssemblyName attribute will cause MSBuild to load the assembly by calling
System.Reflection.Assembly.Load. This requires the long form of the assembly name to
be provided. An example is Microsoft.Build.Tasks, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a, which is found in the Microsoft.CSharp.targets file. If you
use the AssemblyFile attribute, it will be loaded with the System.Reflection.Assembly.LoadFrom
method. TaskName is the class name for the task; this class must implement the Microsoft.Build.
Framework.ITask interface. Instead of directly implementing this interface, we recommend you
extend the abstract Microsoft.Build.Utilities.Task class.

Now let’s return to the other elements of the NUnit.targets file. The lone property in the
previous snippet is the NUnitErrorHandlers property; this is a semicolon-separated list of tar-
gets that will be executed when an error occurs. Table 4-11 describes the four items.

CHAPTER 4 ■ EXTENDING MSBUILD94

Table 4-11. NUnitTask Items

Name Description

TaskBin This is the directory that contains the NUnitTask assembly and all of its
dependencies.

NUnitCache This is the temporary directory that NUnit will use during the test execution.

NUnitLog The location that a log file will be saved, if the tests are all successful.

NUnitFailLog The location of the log file that will be generated if failed tests were detected.
Only one of the two log files will be produced.

From these four items, two are directory locations, and the other two are locations to a log
file that will be generated. The TaskBin is a location that will contain the NUnitTask assembly
and all of its dependencies. This can be a central location that contains many different MSBuild
tasks. This value can be driven from an environment variable or hard-coded as in this example.
If the value is gathered from an environment variable, then you can reference it simply as if it
were a defined property. The NUnitCache item is the location that NUnit will use during the
course of executing the test cases. The other two items are log file locations.

During the course of execution of NUnitTask, there are three possible outcomes: all tests
pass, one or more tests fail, or an error occurs to stop execution of the task. If an error occurs
to stop the execution, most likely no log file will be created, depending on when the error
occurs. If all tests pass, the log file will be written and the location will be pointed to by NUnitLog.
If at least one test fails, then the log will be written to the NUnitFailLog path. It may seem kind
of silly to write to two different locations depending on success/failure, but this technique has
two advantages:

• It supports incremental building.

• Success/failure is easily detected by other tools.

Incremental building is when parts of a build are skipped because they are up-to-date.
This is a critical component for building larger projects. By using incremental building, you
may be able to skip some very costly build steps when they are not required. In the next sec-
tion, we will discuss incremental building in detail. For the second aspect, any other tool can
easily examine the log folder and determine whether the tests were a success.

Introducing Incremental Building
Incremental building is the process of building software completely without having to repeat
unnecessary steps. An example of this would be building a solution that contains only a few
modified source files. If you were to perform a complete rebuild, then you may be wasting
resources and time. Most likely, you can skip building projects that do not depend on the
modified files. This is incremental building. When creating tasks and targets, you have to remem-
ber to write them such that you can enable incremental building.

To enable incremental building, your targets must have inputs and outputs. When it is time
to execute a target, MSBuild will examine the inputs and the outputs of the target to determine
whether the target needs to be executed. If inputs were created after the outputs, then that tar-
get must be rebuilt; otherwise, it can be skipped. In this case, you want to execute the test cases
if the assemblies you are testing have changed since you last tested them. Let’s see how you
facilitate this by looking at the beginning of the target definition, as shown here:

CHAPTER 4 ■ EXTENDING MSBUILD 95

<Target Name="RunAllTests"
DependsOnTargets="Build"
Inputs="@(IntermediateAssembly)"
Outputs="@(NUnitLog)">

The input is the IntermediateAssembly item; this is the list of assemblies that will contain
the tested assemblies. The output is the NUnitLog file; this is the log file that will be written if
there is a successful build. If the assemblies are older than the NUnitLog file, then the testing
will be skipped. Since you are creating a different file for successful tests versus failed ones,
MSBuild can properly determine whether the testing needs to occur. If you were to simply write
the same file, then the target may be skipped when the tests need to be executed again.

Consider this scenario: you perform a build and a test, with some of these test cases failing.
On this test execution, you will be notified that some test cases failed. Following this, you take
the day off because you are frustrated fixing bugs. The next day you come back and perform the
same build and test against unmodified assemblies, and you would not be notified that test cases
failed. MSBuild will skip the RunAllTests target, because the outputs are up-to-date with respect
to the inputs. Now let’s examine the complete contents of the RunAllTests target, as shown here:

<Target Name="RunAllTests"
DependsOnTargets="Build"
Inputs="@(IntermediateAssembly)"
Outputs="@(NUnitLog)">

<MakeDir Directories="@(NUnitCache)" Condition="!Exists(@(NUnitCache))"/>

<Delete Files="@(NUnitFailLog);@(NUnitLog)"/>

<!--
This works only for debug mode. To support release
mode, then you need two CreateItems calls, one for debug
and one for release mode. You should use a condition
to determine which assemblies will be included in the testing.

-->

<!-- Can't use the IntermediateAssembly directly
because it will cause the tests to fail. -->

<CreateItem Include="bin\debug***.dll; ➥

bin\debug***.exe;">
<Output TaskParameter="Include" ItemName="TestAssemblies"/>

</CreateItem>

<Message Text="Running unit tests in: @(TestAssemblies)"/>
<NUnitTask Assemblies="@(TestAssemblies)"

CacheDirPath="@(NUnitCache->'%(FullPath)')"
LogFile="@(NUnitFailLog)"
ContinueAfterError="false"

>

CHAPTER 4 ■ EXTENDING MSBUILD96

<Output TaskParameter="NumFailedTests" PropertyName= ➥

"NumNUnitFailures"/>
<Output TaskParameter="NumExecutedTests" PropertyName= ➥

"NumExecutedTests"/>
</NUnitTask>

<!--
If the tests passed, then move the file to the target output
location; that way we don't have to run this target again against
the same code base. If it fails, we purposefully don't move to the
successful location because incremental building will skip
this target after failed tests.

-->
<Copy

SourceFiles="@(NUnitFailLog)"
DestinationFiles="@(NUnitLog)"
SkipUnchangedFiles="false"
Condition="'$(NumNUnitFailures)' == '0'"

/>
<Delete Files="@(NUnitFailLog)"/>

<Message Text="NUnitLogFile: @(NUnitLog->'%(FullPath)')" ➥

Condition="'$(NumNUnitFailures)' == '0'"/>
<Message Text="NUnitLogFile: @(NUnitFailLog->'%(FullPath)')" ➥

Condition="'$(NumNUnitFailures)' != '0'"/>
<Message Text="Num executed tests: $(NumExecutedTests)"/>

<!-- If an error occurs during the process, these
targets will be called -->

<OnError ExecuteTargets="$(NUnitErrorTargets)"/>
</Target>

This target has three main sections; one sets up for the test execution, one performs the
execution, and the last follows up on the executed tests. In the set-up section, you’ll notice the
CreateItem task is being called. This is used to determine which assemblies need to be tested.
This task will consume an item definition and dynamically create that item. As was previously
stated, items are all evaluated before any targets are executed. This is the reason why you have
to dynamically create a new item with CreateItem, because the necessary assemblies would
not be present to populate the item before the build started.

When you call NUnitTask, you provide all the required inputs and read only the outputs in
which you are interested. You are not required to read all the outputs from a task. An output
from a task can either be placed in an item or be placed in a property; this depends on the task
implementation. In this sample, all of the outputs are simple values that can be contained in
properties. If you were outputting files or a list, then an item would be appropriate. Now let’s
finish up our discussion of this file by going over the last section.

In the final step to the process, you need to perform some actions depending on whether
the tests cases passed or failed. This is determined by the NumFailedTests output of the task.
As you can see in the previous invocation, that output is placed into the NumNUnitFailures

CHAPTER 4 ■ EXTENDING MSBUILD 97

property. You know that no test cases failed if the NumNUnitFailures is zero. This is written as
a condition as '$(NumNUnitFailures)' == '0'. You know that failures existed if the condition
'$(NumNUnitFailures)' != '0' evaluated to true. If the test cases are successful, then the log
file is moved to the location of the successful path. Now that you know how the main section
of the target file works, we’ll show you how you can clean up after this target easily.

As you create new targets and tasks, you most likely will be creating files, especially if you
are thinking about incremental building. Remember, incremental building requires inputs and
outputs. When you are creating these new files, it is important to clean the files when the user
desires as well. The best way to do this is to perform this action as a part of the normal Clean
target. You have many different options about how to implement this, but the best solution would
extend the normal clean to also clean any generated files, would not affect any other clean
enhancements, and would be portable across different projects. The clean process defined in
the NUnit.targets file meets all of these requirements. Now you will examine this to see how
you should clean up newly generated files.

Cleaning NUnitTask Files
As you extend the build process, you are likely to generate new files. As part of your agreement
with MSBuild, you are responsible for cleaning these files as well. NUnitTask creates files that
need to be cleaned. You will examine how NUnitTask integrates into the clean process; then in
the “Extending the Clean Process” section we will discuss cleaning in general. You can clean
a project either at the command prompt or from within Visual Studio. If your targets are creating
files that should be cleaned during this process, then you must extend the Clean target. The Clean
target is defined in the Microsoft.Common.targets file. The best way to enhance the clean is to
first create a target to clean your files and then add this target to the CleanDependsOn item. The
CleanDependsOn is a property defined in the Microsoft.Common.targets file. It is a semicolon-
separated list of targets that will be executed before a Clean is performed. The relevant portion
of the NUnit.targets file is as follows:

<PropertyGroup>
<!-- Extends CleanDependsOn to include cleaning

the NUnit-generated files -->
<CleanDependsOn>
$(CleanDependsOn);
CleanNUnit

</CleanDependsOn>
</PropertyGroup>
<!--

Run this target to remove NUnit-generated files
-->
<Target Name="CleanNUnit">

<Delete Files="@(NUnitLog)" Condition= ➥

"Exists(@(NUnitLog))"/>
<Delete Files="@(NUnitFailLog)" Condition= ➥

"Exists(@(NUnitFailLog))"/>
<RemoveDir Directories="@(NUnitCache)" Condition= ➥

"Exists(@(NUnitCache))"/>
<OnError />

</Target>

CHAPTER 4 ■ EXTENDING MSBUILD98

In the property declaration, you are taking the existing definition of CleanDependsOn and
appending to it. Using this mechanism is simple and friendly for other targets that would like
to clean their files as well. Consider this scenario: you have two targets that will create files that
need to be cleaned; if they both extended CleanDependsOn, then both targets will be executed
when a Clean is performed. There is no risk in creating modifications that will overwrite previ-
ous modifications because you are always appending to the CleanDependsOn item list. Now
you know how to execute the unit tests and how to clean up after that process as well.

Seeing NUnit in Action
Now we will demonstrate the execution of the NUnit test execution against a simple project.
First we’ll show the project you will be building. This is the DataAccess project. In this project
there is an IContact interface, which defines the behavior of your contacts, and a class that
implements this interface, which is the Contact class. The interface definition is as follows:

namespace DataAccess
{

public interface IContact
{

string FirstName
{

get;
set;

}
string MiddleName
{

get;
set;

}
string LastName
{

get;
set;

}
string Email
{

get;
set;

}
string Website
{

get;
set;

}
///<summary>
///Social security number (identifier)
///</summary>
string Ssn

CHAPTER 4 ■ EXTENDING MSBUILD 99

{
get;
set;

}
}

}

IContact is a simple interface that simply exposes some properties. The Contact class
implements these properties. Each of the properties will get/set its value to a private data
member. The Contact class also provides a useful static method, BuildContacts, to create a list
of contacts from a DataSet. The following shows one of the property implementations and the
BuildContacts method:

public string Ssn
{

get
{

return this._ssn;
}
set
{

this._ssn = value;
}

}
public static IList<IContact> BuildContacts(DataSet ds)
{

IList<IContact> contacts = new List<IContact>();

if (ds == null || ds.Tables.Count == 0)
return contacts;

DataTable dt = ds.Tables[0];

foreach (DataRow row in dt.Rows)
{

IContact current = new Contact();
current.FirstName = row["FirstName"].ToString();
current.MiddleName = row["MiddleName"].ToString();
current.LastName = row["LastName"].ToString();
current.Ssn = row["Ssn"].ToString();
current.Website = row["Website"].ToString();
current.Email = row["Email"].ToString();
contacts.Add(current);

}

return contacts;
}

CHAPTER 4 ■ EXTENDING MSBUILD100

The BuildContacts method will simply convert the data contained in the passed-in
DataSet, ds, to a list of IContacts. Now that you have seen the classes you will be testing, you’ll
examine how to create the tests for them.

There are many discussions about where unit testing should go with respect to the code
that it is testing. Some prefer to have the testing code in a different solution from the project
source code, and others like to have the testing code within the same project to allow white-box
testing. In this sample, we will provide the test code in a separate project called DataAccessTest.
Where you place your test code will be a decision based on the requirements of the test code
and your organization’s rules.

The DataAccessTest project contains a single class; this is the DataAccessTest class. One of
the ideas behind Test-Driven Development (TDD) is to provide a test for each publicly available
method or property. The DataAccessTest class provides this for the Contact class. You have six
public methods to perform the testing and one method to set up the environment for the test
case. With NUnit, if you apply the SetUp attribute to a method, then this method will be executed
before every NUnit test gets executed within that test fixture. In this case, you will use this
method to create a list of IContacts before you test each property. The set-up method,
SetUpContacts, is as follows:

[SetUp]
public void SetUpContacts()
{

FileInfo _tempFile = this.WriteFile();
if (_tempFile == null)

throw new Exception("Unable to write the Contacts test file");

DataSet ds = new DataSet();
ds.ReadXml(_tempFile.FullName);
this._contacts = Contact.BuildContacts(ds);
//now we can delete the file
_tempFile.Delete();

}
private FileInfo WriteFile()
{

string fileName = "tempContacts.xml";
string fileText = @"

<Contacts>
<Contact Ssn=""111-11-1111"">

<FirstName>Sayed</FirstName>
<MiddleName>Ibrahim</MiddleName>
<LastName>Hashimi</LastName>
<Email>sayed.hashimi@gmail.com</Email>
<Website>www.sedodream.com</Website>

</Contact>
<Contact Ssn=""222-22-2222"">

<FirstName>Sayed</FirstName>
<MiddleName>Yahya</MiddleName>
<LastName>Hashimi</LastName>

CHAPTER 4 ■ EXTENDING MSBUILD 101

<Email>sayed@sayedhashimi.com</Email>
<Website>www.sayedhashimi.com</Website>

</Contact>
<Contact Ssn=""333-33-3333"">

<FirstName>Mike</FirstName>
<MiddleName>Ray</MiddleName>
<LastName>Murphy</LastName>
<Email>magickmike@gmail.com</Email>

</Contact>
</Contacts>
";

FileInfo theFile = new FileInfo(fileName);
File.WriteAllText(theFile.FullName, fileText);
return theFile;

}

The SetupContacts method sets up a new list of contacts before each test is performed. It
is important to create NUnit tests that do not depend on any other tests cases and also to cre-
ate NUnit test cases that are not disturbed by other test cases. This is why you are re-creating
the list of contacts before each test method. Since all the test cases are similar, we will show
only one. The following is the TestFirstName method:

[Test]
public void TestFirstName()
{

IList<string> expectedNames = new List<string>();
expectedNames.Add("Sayed");
expectedNames.Add("Sayed");
expectedNames.Add("Mike");

Assert.AreEqual(this._contacts.Count, expectedNames.Count);

for (int i = 0; i < expectedNames.Count; i++)
{

Assert.AreEqual(expectedNames[i], _contacts[i].FirstName);
}

}

In this method, you are simply ensuring that the FirstName property for the Contact class
is being properly set and retrieved. The other test methods are against the remaining public
properties of the Contact class. Now you will see how to put everything together.

From this point, the only thing left is to integrate the NUnit execution task into this proj-
ect. To do this, all you have to do is add the following to the project file:

<PropertyGroup>
<SharedTargetsPath>..</SharedTargetsPath>

</PropertyGroup>

<Import Project="$(SharedTargetsPath)\NUnit.targets" />

CHAPTER 4 ■ EXTENDING MSBUILD102

Figure 4-6. RunAllTests target

Here you are declaring a property, SharedTargetsPath, that will contain all the target files that
are shared across targets. In this example, this path is actually the location above the directory
containing the project file. In your organization, you may have a location set aside for these
types of tasks, and you can inject that path into the SharedTargetsPath declaration. The reason
that this is declared as a property instead of an item is because you may choose to get this value
from an environment variable instead of placing it into the file itself. If this is the case, you can
simply remove the property declaration, and everything should work.

Now that you have successfully integrated the NUnit.targets file, you have two new targets
that you are able to execute against your projects. Those targets are RunAllTests and CleanNUnit.
Actually, another target exists, but it is related to error processing and shouldn’t be called directly.
We previously spoke about RunAllTests, so now we’ll show how to execute it and show you the
results against the DataAccessTest project. To invoke the tests at the Visual Studio command
prompt, you can run >msbuild DataAccessTest.csproj /t:RunAllTests. Figure 4-6 shows the
output.

The RunAllTests target will be executed after a complete build is performed; as you can
see, six test cases were executed, and all tests passed. Now to see incremental building at work,
execute the RunAllTests target again. Figure 4-7 shows the result.

Figure 4-7. RunAllTests target being skipped

CHAPTER 4 ■ EXTENDING MSBUILD 103

As you can see in Figure 4-7, the RunAllTests target was skipped. Also notice the time spent
during the build. This last execution took 24 milliseconds whereas the previous execution took
2.4 seconds. This is because the RunAllTests targets, and possibly others, were skipped. If you
are writing custom target, providing inputs and outputs to support incremental building is
essential for builds that execute efficiently and quickly. Now we will move on to discuss how to
clean your projects.

Extending the Clean Process
As you extend the build process, you are likely to create new files and place them in different
places. If you extend the build process, you are also given the work of cleaning up after your
extensions. Even if you place files in the OutputPath folder, they will not automatically be cleaned.
They will simply be ignored. In this section, we will discuss how MSBuild cleans the files it
generates and how you should clean the files you generate.

How does MSBuild clean its files? As your project is built, MSBuild keeps track of what
files are generated so it knows to remove them on a clean. This file, CleanFile, is stored in
BaseIntermediateOutputPath, which is usually the obj\ directory. The CleanFile simply contains
the path to files that were generated that need to be cleaned. Files that are eligible for cleaning
with this process must be under either OutDir (usually a folder under the bin directory for the
current configuration) or IntermediateOutputPath (usually a folder under the obj directory for
the current configuration). When the Clean target is invoked, it will examine CleanFile and
remove all the corresponding files that are placed under either of those locations. Any files that
are generated as an extension to the build process will not be listed in this file and therefore
will not be cleaned. To properly clean your files, you have two options:

• You can add entries to the clean file.

• You can extend the clean process.

The easier of these two tasks to complete is the first one, but the more flexible and robust
option is to extend the clean process in a similar fashion as you did the build process. We will
first discuss how to achieve the first approach because you may see others do this and because
it is suitable for most cases. Following this, we will discuss how to extend the clean process by
injecting your target to be executed with a call to Clean.

To have your files “automagically” removed upon a clean, all you have to do is list the generated
files in the MSBuild clean file. To do this, you can simply call the predefined WriteLinesToFile
task. Table 4-12 describes the input parameters to this task.

Table 4-12. WriteLinesToFile Task Parameters

Parameter Type Description

File ITaskItem The file to which the content will be written

Lines ITaskItem[] The items that will be written to the file

Overwrite Boolean If true, existing content will be overwritten; otherwise the file
will be appended to

To demonstrate this in use, examine the following project file segment. This segment is
taken from the CleanEx1 project. This is a simple C# project that was created to simply demon-
strate this cleaning integration.

CHAPTER 4 ■ EXTENDING MSBUILD104

<!-- Inject the custom target into the build process-->
<PropertyGroup>
<BuildDependsOn>
$(BuildDependsOn);
WriteCompileFile;

</BuildDependsOn>
</PropertyGroup>
<PropertyGroup>
<OutputPathCopy>$(MSBuildProjectDirectory)\BinCopy</OutputPathCopy>

</PropertyGroup>

<!-- Item for the new file -->
<ItemGroup>
<MyOutputFile Include="$(OutputPath)Myoutput.txt"/>

</ItemGroup>

<Target Name="WriteCompileFile">
<Message Text="Writing the compile file"/>
<WriteLinesToFile
File="@(MyOutputFile)"
Lines="@(Compile)"
Overwrite="false"/>

<!-- Append this file to the list of files to be removed upon a clean -->
<WriteLinesToFile
File="$(BaseIntermediateOutputPath)$(CleanFile)"
Lines="@(MyOutputFile)"
Overwrite="false"/>

</Target>

In this segment you have a property, an item, and a target defined. The property,
BuildDependsOn, is used to inject the WriteCompileFile target into the build process, and the
item represents the file that will be written to. When the WriteCompileFile is executed, the files
that are contained in the Compile item will be written to the MyOutputFile file, and the CleanFile
will have a new entry. You can verify that CleanFile has your new entry by viewing its contents.
For this project, the CleanFile is located at obj\CleanEx1.csproj.FileList.txt. The contents of
this file are as follows:

bin\Debug\CleanEx1.exe
bin\Debug\CleanEx1.pdb
obj\Debug\ResolveAssemblyReference.cache
obj\Debug\CleanEx1.exe
obj\Debug\CleanEx1.pdb
bin\Debug\Myoutput.txt

As you can see from the boldfaced line, the entry was successfully placed in CleanFile.
Now when the Clean target is invoked, this file will be deleted. Another approach is to append
to the FileWrites property. This property is defined in the Microsoft.Common.targets file, but
this approach is also difficult to get working 100 percent correctly.

CHAPTER 4 ■ EXTENDING MSBUILD 105

Despite this approach working, it is not recommended and wasn’t meant for this purpose.
Using this technique will make creating incrementally building targets difficult, because in
most cases your output file will be deleted by MSBuild before the build takes place and there-
fore will be rebuilt. Also, this is not recommended because you can place only items in certain
folders. Another reason to not use this technique is because when the clean is invoked, you have
no control over what happens, and you cannot make other things happen. We will now describe
a better technique that will enable all of these features.

You just saw how you can hook into the MSBuild clean process and include new files for
deletion upon a clean. But you didn’t extend the clean process; you just snuck your files into
the list to be deleted. As was previously mentioned, it is much better to extend the clean process.
We will discuss what this takes now. Similarly to how you extended the build process, you will
extend the clean process.

When a clean is requested on a project, the Clean target gets invoked. What you want to
do is to create a target that will clean the newly created files and to extend the Clean target to
include the new target. To demonstrate this, you will examine the NUnit.targets file once again.
This file contains the necessary elements to clean the files that the custom targets generate.
The following is the relevant section from that file:

<!-- Extends the CleanDependsOn to include cleaning the NUnit-generated files -->
<CleanDependsOn>
$(CleanDependsOn);
CleanNUnit

</CleanDependsOn>
</PropertyGroup>
<!--

Run this target to remove NUnit-generated files
-->
<Target Name="CleanNUnit">
<Message Text="Clean File: $(BaseIntermediateOutputPath) ➥

$(CleanFile)"/>
<Delete Files="@(NUnitLog)" Condition="Exists ➥

(@(NUnitLog))"/>
<Delete Files="@(NUnitFailLog)" Condition="Exists ➥

(@(NUnitFailLog))"/>
<RemoveDir Directories="@(NUnitCache)" Condition="Exists ➥

(@(NUnitCache))"/>
<OnError ExecuteTargets="HandleNUnitError"/>

</Target>

First in this segment you redefine the CleanDependsOn item. This is the list of targets to be
executed when a Clean is invoked. From this declaration, notice that you are first getting the
current value for $(CleanDependsOn) and then adding CleanNUnit to it. You do this in the same
manner as you extended the Build target in previous examples. Following this, you define the
CleanNUnit target. This is a simple target that deletes all of the files that the RunAllTests target
could have created. Also, an error handler is defined, in case an error occurs during the course
of execution.

CHAPTER 4 ■ EXTENDING MSBUILD106

Figure 4-8. Clean “automagically” removing NUnit-generated files

If you execute the RunAllTests target on the DataAccessTest example as shown previously
(with >msbuild DataAccessTest.csproj /t:RunAllTests), this will create a file, NUnit.log, and
the directory cache, both in the output folder. Now perform a clean to verify that these do get
deleted. You can perform a clean with >msbuild /t:Clean. Figure 4-8 shows the results of this.

You can see from Figure 4-8 that the CleanNUnit target was executed automatically and
that your files were successfully deleted as expected. Using this method, since a custom target
is being executed, you can perform any necessary steps, even break into custom tasks for more
complicated steps if necessary. We have now covered all the necessary bases to extend MSBuild
to perform all the steps your application requires—and to do it nicely.

Summary
In this chapter, we presented the two most extensible aspects of MSBuild: custom loggers and
custom tasks. We discussed how you can hook into the MSBuild logging process to create your
own logger that meets the specific needs of your application if necessary. We covered how to
create custom tasks to perform steps unattainable from existing MSBuild tasks. During this, we
also discussed incremental building and how you can create targets and tasks that support it.
We showed how to cleanly extend the build and clean process that MSBuild currently has in
place. With these tools, you should be able to customize the build to meet the needs of your
applications. All of the source code for this chapter is available in the Source Code section of
the Apress Web site (http://www.apress.com). For brevity reasons, some details of that code
could not be covered; for more information, see the source files.

Introducing Team Foundation
Server and Team Build

In this chapter, we will introduce some new solutions that Microsoft has created for enterprise
organizations. These include Visual Studio 2005 Team Foundation Server (TFS) and Team
Build, which are two products in the new Visual Studio Team System (VSTS) product line. Team
Build is a powerful component that is built on top of MSBuild. Team Build is a build automation
tool included in TFS. The primary goal of Team Build is to provide organizations with a “build
lab out of the box.” You need many prerequisites to be able to use Team Build, and we’ll briefly
discuss them in this chapter. Beyond this, we will introduce some of the other new components
of VSTS, and we will cover how Team Build works and how you can use it to execute custom builds
on a dedicated build machine. We will also discuss how you can extend the Team Build
build process. Finally, we will discuss how to create an automated public build by using
Team Build.

Introducing Visual Studio Team System (VSTS)
In this chapter, we will mainly discuss Team Build, which is a component in the new VSTS
product line. VSTS is aimed at integrating all parties involved in the development life cycle,
from the architect to the developer to the project manager. The team in Team System is the
entire team involved in the development effort, not just the development team. VSTS is an
effort by Microsoft to raise the bar for its software development tools and to capture more of
the enterprise development marketplace. Discussing the details of what VSTS is and how you
can use it in your organization is beyond the scope of this text, but we will discuss the compo-
nents that are relevant to you in this chapter, namely, Team Build and TFS. For more detailed
information about VSTS, you can refer to http://msdn.microsoft.com/vstudio/teamsystem.

One of the major additions in VSTS is TFS, which is an all-new source control management
(SCM) utility. You may be wondering why Microsoft is releasing a new SCM tool when it already
has Visual SourceSafe. TFS is targeted to enterprise software companies; Visual SourceSafe is
more geared toward smaller corporations. TFS is not just an SCM tool; it introduces some new
enterprise features that we will explain throughout the course of this chapter. Note that TFS is
required in order to use Team Build and most of what is covered in this chapter.

107

C H A P T E R 5

■ ■ ■

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD108

Introducing Team Build
If you are using TFS as your SCM tool, you have the ability to add another component to it.
This component is called Team Build, and you may have to install this component from your
TFS install disc. Team Build is part of a larger product called Team Foundation Build, which is
responsible for managing every aspect of team builds. As previously stated, the goal of Team
Build is to provide organizations with a “build lab out of the box.”

A team build, or public build, is a build created on a dedicated machine that the entire
organization can reference later. Team builds are good because the configurations of the build
machines are not in question like a developer’s machine typically is, and you typically have
a way to re-create these public builds. Team Build is the product you will use to create new
public builds and execute them. Team Build is built on top of MSBuild and is extensible just
like your typical build is. We will cover how to customize the team build later in the “Extending
the Team Build” section.

So how do you create a team build? The idea is fairly simple; you have a machine that
runs the Team Build service and waits for build requests. Once this happens, then it will get
the latest code from the repository and proceed to build the specified product. When this is
complete, Team Build will place the results at a specified location, which can be on the build
machine or any other accessible network share. Along with building your product, you can
also choose to have code analysis and unit tests executed along with your code. Team Build
provides this out of the box. If you need to further control the execution, you can customize
the team build similarly to how you customize other builds.

Introducing the Team Foundation Build
Architecture
Before we start discussing in detail how to use Team Build, we will first describe how Team
Build fits into the big picture of VSTS, and we will provide you with a look at the architecture
behind Team Foundation Build. As mentioned earlier, Team Build is part of Team Foundation
Build (see Figure 5-1).

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD 109

As shown, five primary responsibilities need to be fulfilled. Let’s examine these roles a little
more closely.

Team Foundation Build Client
Just as you would expect, this is the part of the application that the user interacts with. This is
hosted inside Visual Studio. You can perform such tasks as start team builds, view reports for
previous builds, or create new build types. A build type is simply a definition for what will be
built and how it will be built. For example, you could create a new build type called Release build
or Nightly build. You can also specify which users can perform which actions. For instance,
you could have a group that is responsible for creating new build types. Other users would not
be allowed to create new build types.

The security configuration of TFS is an important topic; unfortunately, this is outside the
scope of this text. Each client must have the Team Foundation Build client installed; you can
find this on the TFS install disc.

Figure 5-1. Team Foundation Build architecture

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD110

Application Tier
The application tier is the machine responsible for hosting most of the applications. For instance,
the source control application will run from this machine, and the Web-based project portals
will be driven from this machine. TFS uses a Windows Server 2003–based product for the project
portals, which is Windows SharePoint Services 2003. SharePoint Services is a free Web-based
tool designed to help share information and increase collaboration amongst team members
and with customers. For more information about Windows SharePoint Services, you can visit
the Windows Server 2003 home page at http://www.microsoft.com/windowsserver2003/.

Data Tier
The data tier is responsible for containing and managing all the data of the projects. For instance,
the source control database is located on this machine, along with several other databases. This
machine must have SQL Server 2005 installed and running. SQL Server 2005 has many new fea-
tures that TFS utilizes. For instance, Reporting Services generates the build reports, and you can
create your own new reports if you are familiar with this technology.

Build Machine
The build machine is a clean machine dedicated to conducting public builds. Typically you will
not use this machine for any other purpose besides conducting the builds. This machine must
have the Team Build service installed and running prior to any builds being produced on this
machine. You can find the setup for this on the TFS setup disc.

Drop Location
This is any accessible network share; it will contain the binaries for all the builds. This will include
every version that was built for each product. Source code will not be placed on this machine;
it will contain only binary files and log files for each build. Typically you will want all the devel-
opers in the organization to be able to read from this share.

Using Team Foundation Build
In this section, we will discuss how you can use Team Foundation Build to create an automated
public build for your projects. It is assumed that you have TFS installed and in use as your SCM
tool. For demonstration purposes, we will be using an open source project named Codus. Codus
is an object-relational mapping (ORM) tool. You can find more information about Codus at
http://adapdev.com/codus/index.aspx. The complete source code for this project is available
along with the other source for the exercises.

We had to slightly modify the Codus project to fit the needs of a public build. In particular,
we placed all third-party assemblies in a common directory that is accessible to all projects
and that was checked into source control. To use Team Foundation Build, your project must
be part of a team project. A team project is not like the Visual Studio project that you are used
to. A team project is part of VSTS and is designed to span multiple solutions. From the team
project, you will reference the source control repository, manage work items and project doc-
uments, and do much more.

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD 111

Now let’s see how you can get started using Team Foundation Build. If you don’t already
have a team project defined, then you will need to create one. Follow the steps in the next sec-
tion to create a new team project.

Creating a New Team Project
Open Visual Studio, and select File ➤ New ➤ Team Project. This opens the New Team Project
Wizard shown in Figure 5-2. Simply specify the name of the team project, and click Next.

On the next page of the Team Project Wizard, you are asked to select a process template.
This defines the development style that this project will use. By default you have two options:
MSF for Agile Software Development or MSF for CMMI Software Development. The MSF for
Agile template is the template you should use if your organization is using agile development
methodologies. Select the MSF for CMMI template if your project requires longer software
development life cycles and a more rigorous approach to software development. You can also
create new process templates if needed. For this project, select the MSF for Agile template,
and then click Next to move to the next page.

On the next page, you are asked to give your project portal a title and description. You can
fill these in with appropriate values and then click Next to configure the source control set-
tings. On the settings page, you have three options for your source control:

• You can create an empty source control folder.

• You can create a new source control branch.

• You cannot create a source control folder at this time.

Figure 5-2. New Team Project Wizard

For this project, you will go with the default, Create an Empty Source Control Folder. After
you click Next, you will see a summary of the team project settings. At this time, you can click
Finish to begin creating the team project. After the team project is built, the project portal
appears in Visual Studio, as shown in Figure 5-3.

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD112

The project portal opens in Visual Studio with the process guidance section. This section
describes how you can manage your team project. It covers topics from member roles to team
builds. Before you dive deep into team projects, we strongly suggest you examine the process
guidance pages for a good description about how to proceed.

Understanding the Team Project Fundamentals
Now that you have set up your team project, we’ll cover some of the contents of your team
project. If the Team Explorer pane is not visible, you can open it by selecting View ➤ Team
Explorer. Figure 5-4 shows the Team Explorer pane.

Figure 5-3. Project portal view in Visual Studio

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD 113

As you can see from Figure 5-4, the team project has five main elements: Work Items,
Documents, Reports, Team Builds, and Source Control. The following sections explain each of
these elements.

Work Items
A work item summarizes work that needs to be completed on the project. This can be fixing
a bug, creating new functionality, writing documentation, and so on. Don’t limit yourself to
thinking that work items are just for developers; this is the team project, and every team mem-
ber can, and should, have work items. From the Work Items element, you can query the work
items database for specific conditions.

Documents
When developing with previous versions of Visual Studio, you didn’t have a good means to
integrate project documents with the projects themselves. Sure, you could place them into
a folder with the project, but this was certainly not an ideal solution. With TFS, this issue has
been solved. You can place all files that relate to your project in the Documents node under your
project. This can include, but is certainly not limited to, documents describing coding standards
and documents addressing security vulnerabilities. When you create a new team project, you
might be surprised to find many preexisting documents in this node.

Figure 5-4. Team Explorer pane

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD114

Reports
Reports keep track of your project over a period of time. Many reports are available out of the
box, including a report for all team project builds, a report for bug rates, and several others.
You can also create new reports; these reports are built on top of Reporting Services. All reports
are stored on the server and are available to other team members.

Team Builds
This is the section that the remainder of this chapter will focus on. This node displays all your
defined team builds, and it allows you to create new team builds. Since you may have different
products in this team project, you may have many different team builds available to build
against all those products.

Source Control
Last but certainly not least is the Source Control section; from this node you can access the
source control repository. If you double-click the Source Control item, the Source Control
Explorer pane opens in Visual Studio. Currently the Adapdev team project, shown in Figure 5-4,
does not have any files in the Source Control section.

We will now explain how you can add this project to source control.

Placing Code in Source Control
Now that you have an idea of what Team Foundation Build is, we’ll show how to add the Codus
project to source control. Before you do this, though, let’s create a work item for this. To create
a new work item, right-click the Work Items node in Team Explorer, and select Add Work Item.
You also have to specify its type. Name the task Initial Checkin, fill in the other appropriate
text boxes, and click Save. Now you can proceed to check the solution into the source control
system. Follow these steps:

1. Open the solution in Visual Studio.

2. Right-click the solution in Solution Explorer, and select Add Solution to Source Control.

3. Following this, a dialog box will ask you which team project this belongs to; select
Adapdev, and click OK, as shown in Figure 5-5.

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD 115

4. Now you have to commit your changes. Do this by right-clicking the Codus solution in
Solution Explorer and selecting Check In. This presents you with the dialog box shown
in Figure 5-6. Select Adapdev.

5. After you click OK, you will see a page that displays the current change set being
checked in. From this page you can add check-in notes and associate work items
with this check-in change set, as shown in Figure 5-7.

Figure 5-5. Selecting the team project for source control

Figure 5-6. Connect to Team Foundation Server dialog box

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD116

6. In Figure 5-7, you can see four different views of your change set. These views are Source
Files, Work Items, Check-in Notes, and Policy Warnings. You are especially interested in
the Source Files view and the Work Items view. The Source Files view shows you the files
that have been modified in the current change set and gives you a place to provide
a comment about your check-in. The Work Items view allows you to associate this
change set with any work items defined. To access any of these views, simply click the
appropriate view icon. For this example, you want to associate this check-in with the
Initial Check In work item created earlier. Do this by clicking Work Items and selecting
the Initial Check In task, as shown in Figure 5-8.

Figure 5-7. Source Files view of the Check In dialog box

Figure 5-8. Work Items view of Check In dialog box

7. At this point, you are ready to check in your project, so simply click the Check In button.

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD 117

Now that you have your project under source control and know a few more things about
TFS, let’s move on to Team Build and get started creating a new public build.

Using Team Build
Your first goal with Team Build is to get a public build running on a public machine that you
can trust to build your products. In this scenario, you will actually be using the machine that
TFS is installed on, but this is not recommended. When using Team Build in your organization,
you will want a dedicated machine to perform builds. You must install Team Build on this
machine; you can find it on the TFS disc.

Now you need to create a new team build from Visual Studio. First right-click the Team Builds
node, and then select New Team Build Type. You will see the New Team Build Type Creation
Wizard, as shown in Figure 5-9.

On this page, you should specify the name and description of your team build. For this
build, name it Daily Codus build. Later in this chapter we will discuss how you can automate
this process. Click Next to proceed to the next page of this wizard, where you’ll select which
solutions you want to include in the build. On this page, you pick the only available solution,
the Codus solution. Clicking Next brings you to the configuration selection page; for this build,
select the Release configuration. On the next page, you will provide information about the
build machine, as shown in Figure 5-10.

Figure 5-9. New Team Build Type Creation Wizard

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD118

In this example, since you are actually using the machine that is running TFS, you provide
that information in the text boxes. For your team builds, you would provide the information
about the dedicated build machine here. You must fill in three fields, as summarized in Table 5-1.

Table 5-1. Build Location Parameters

Field Name Description

Build machine name This should be the computer name on which you want the build to
occur. You could alternatively use the Internet Protocol (IP) address.

Build directory This is the directory on the build machine where you want the build to
take place. Each time you build, you will find the sources used for the
most recent build in this directory along with the binaries. Think of this
as a temporary directory where the build will occur.

Drop location This is the network share where the binaries will be saved after each
build. Each build will have a unique identifier, so for each build you will
be able to retrieve the binaries from this location. This location should
be on a machine other than the build machine.

After you fill in this information, click Next to access the build options. On this page, you
can specify to run test cases and to perform code analysis. Click Next to go to the summary
page. The final page summarizes the team build type you are about to create, as shown in
Figure 5-11.

Figure 5-10. Build location information

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD 119

On this page you can review everything to ensure you did not make any mistakes when
defining the build type. Notice that it states the build type will be placed under source control.
This means any changes to the build type will be tracked just like your source code. Also, this
tells you where the build type file resides.

The New Team Build Type Creation Wizard is simply a GUI helper that creates the
TFSBuild.proj file. This is the MSBuild file that will drive the team build. Before we discuss
this file in great detail, we will discuss how you can kick off a build, and then we will show
the results.

After completing the New Team Build Type Creation Wizard, you should see a new element
under the Team Builds node in the Team Explorer. In this case, this is the Daily Codus build,
as shown in Figure 5-12.

Figure 5-11. Build type summary page

Figure 5-12. Team Explorer with new team build

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD120

To start the execution of this build, right-click the Daily Codus build element, and select
Build Team Project Adapdev. This presents a dialog box that gives you a chance to override some
of the configuration settings that you set previously, as shown in Figure 5-13.

From here you can select the build type you want to execute, the build machine you want
to execute it on, and the build directory of that machine. All other options are not configurable
from this dialog box. For now, leave the defaults, and click Build. At this point, you should see
a progress dialog box as your build information is sent to the build machine. Once the build
progress dialog box disappears, you will see a view of the build in progress. This view will be
updated as the build continues on the build machine. Figure 5-14 shows a view of the build
starting on the build machine, and Figure 5-15 shows a view of the build progressing on the
build machine.

Figure 5-13. Team build settings

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD 121

The view of the build will continue to expand until the build has completed. The progress bar
will continue to move until the build completes. Once the build has completed, the progress
bar will disappear, and a few links will appear on the page. When you first create a public build
from a solution, don’t be surprised if your build doesn’t pass initially. Typically, developer machines
have items that may be forgotten. For instance, you may have installed some third-party libraries
in the GAC that are missing from the build machine. This is just one good reason for a public
build: you become aware of what it takes to build your project on a clean machine. Figure 5-16
shows the completed build report.

Figure 5-14. View of build starting on build machine

Figure 5-15. View of build progressing on build machine

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD122

It seems as though this build failed! As stated previously, when you try to create a public
build for a product, you may have to make some modifications to be successful. You should
note a few things on this page. You can access the drop site by clicking the build name link.
Since the build failed, Team Build automatically opened a new ticket to resolve this issue.
You can view this work item by clicking the work item’s link. A summary of the build appears
and tells you there were errors and warnings. You can also access the build log by clicking the
log link.

Since your build failed, you are certainly interested in viewing the log for this build so you
can resolve the issues. Here is a section of the build log file:

warning MSB3245: Could not resolve this reference. Could not locate the ➥

assembly "log4net". ...
GUIConfigurator.cs(7,8): error CS0246: The type or namespace name 'Adapdev' ...

After viewing the log, it is obvious that the build machine didn’t have access to the third-party
assemblies that are required to build this solution. This is because they were never checked into
source control. To add these files to source control, you first need to add the folder directly under
the Codus solution folder and then add the files. To do this, you will use a few buttons on the
Source Control Explorer toolbar, as shown in Figure 5-17.

Figure 5-16. Completed build report

Figure 5-17. Source Control Explorer toolbar

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD 123

From this toolbar, click the New Folder button to create the Codus\Shared folder, and then
click the Add Files button to add the files to that folder. After you add the files contained in the
local directory, your source control directory should look similar to the one in Figure 5-18.

You should notice a few things about the Source Control Explorer. The items you added
are ready to be checked in, and now a new node appears under your Adapdev team project,
the TeamBuildTypes node. This was created when you defined the Codus Daily build. At this
point, you can check in the pending changes and rerun the build. When you check this in, you
should associate this change set with the bug that was created by the failed build. Then you rerun
the Codus Daily build. At this point, if all goes well, the build will succeed, and you can exam-
ine the build through the summary page. Now we will discuss how all this happens.

Understanding How Team Build Works
By now you are probably wondering how this whole process works. In a nutshell, at the client
machine, the team build is initiated. This machine communicates with the app server using
Web services. The application server then communicates with the build machine to initialize
and run the build. From this point, the build machine conducts all the necessary steps to exe-
cute the build, including getting the latest sources from the repository. The build machine reports
the status of the build to the application server, which is forwarded by the application tier to
the client machine. After the build is complete, the binaries are placed on the drop machine.

Now you will look at how Team Build actually builds your project on the build machine.
When you create a new team build type with the wizard in Visual Studio, you are actually cre-
ating a few files that will be placed into source control. The files that are created and their
contents depend on what type of project you have and how you configure the team build type.
Three files will be generated each time, and if you are building a C++ project, then another file
will be created to assist with those projects. Table 5-2 summarizes these files.

Figure 5-18. Source Control Explorer

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD124

Table 5-2. Team Build–Generated Files

Name Description

TFSBuild.proj This is the project file that will be built; it contains all the configuration
options specified in the New Team Build Type Creation Wizard. This file
will define values for your projects. The actual build process is imported
through another file, similarly to how desktop builds are imported for
managed projects.

TFSBuild.rsp This is a response file you can use during the team build. In this file you
can configure any command-line options that should be sent to
msbuild.exe when building your project. By default this is empty.

WorkspaceMapping.xml This is an XML file that describes which project is being built. This will
drive which projects are pulled from source control. You can modify
this file, but it is not recommended.

VCOverrides.vsprops This file is processed by vcbuild.exe to build your C++ projects. If you
are not building C++ projects, then this file will not be present.

Of these files, you are most interested in the TFSBuild.proj file; if you need to perform
any customizations to the team build, then you will perform them within this file. We will
discuss how to customize the team build in a bit. For now we will continue discussing how the
team build actually takes place. The TFSBuild.proj file defines your team build, and it defines
the build process by importing the details with the following statement:

<Import Project="$(MSBuildExtensionsPath)\Microsoft\VisualStudio\ ➥

v8.0\TeamBuild\Microsoft.TeamFoundation.Build.targets" />

The Microsoft.TeamFoundation.Build.targets file describes all the steps for a public
build. You can compare this file to the Microsoft.Commons.targets and Microsoft.CSharp.
targets files.

When you perform a team build, you have to follow several steps, as shown in Figure 5-19.
Note that after the sources are retrieved from source control, they are labeled. This ensures

that the same build can be reproduced at any time in the future. When you are working on
enterprise applications, this is essential. After the projects are built, the associated work items
are updated. The work items are work items that have been resolved since the last good build,
which is a build that completes without errors and has all its test cases pass. These work items
will have their FixedIn field populated with this build, if it is a good build. If the build fails,
then a new work item is generated to resolve the build failure. This is one of the powerful fea-
tures of VSTS and TFS; all the major tools are very tightly integrated and work well together.

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD 125

Figure 5-19. Team build steps

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD126

Now that you know what the build steps are, you’ll look at the file that drives this entire
process. This file is the TFSBuild.proj file that is created with the New Team Build Type Creation
Wizard. To view or edit this file, you will have to get it from source control. To do this, open the
Source Control Explorer by double-clicking the Source Control node in the Team Explorer pane,
and navigate to the TeamBuildTypes folder, as shown in Figure 5-20.

From the Source Control Explorer, you can either view the file or check it out for editing.
For now you simply view the TFSBuild.proj file by double-clicking it. If you look in this file, you
will notice that all the configuration options from the New Team Build Type Creation Wizard
are placed in this file. If you would like to change a value from that configuration, you’ll have
to change this file manually. You have no way to launch the Team Build Type Wizard for an
existing team build type. Here is part of this file, minus all the comments:

<Import Project="$(MSBuildExtensionsPath)\Microsoft ➥

\VisualStudio\v8.0\TeamBuild\Microsoft.TeamFoundation ➥

.Build.targets" />

<Import Project="$(MSBuildExtensionsPath)\Microsoft\ ➥

VisualStudio\v8.0\TeamBuild\Microsoft.TeamFoundation.Build.targets" />

<ProjectExtensions>
<Description>This is the Codus build that ➥

will be run daily.</Description>

Figure 5-20. Team Build–generated file in Source Control Explorer

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD 127

<BuildMachine>sayed-ws2003</BuildMachine>
</ProjectExtensions>

<PropertyGroup>
<TeamProject>Adapdev</TeamProject>
<BuildDirectoryPath>F:\Build\Codus</BuildDirectoryPath>
<DropLocation>\\sayed-ws2003\drops\Codus</DropLocation>
<RunTest>false</RunTest>
<WorkItemFieldValues>Symptom=build break;Steps To Reproduce ➥

=Start the build using Team Build</WorkItemFieldValues>
<RunCodeAnalysis>Never</RunCodeAnalysis>
<UpdateAssociatedWorkItems>true</UpdateAssociatedWorkItems>
<WorkItemTitle>Build failure in build:</WorkItemTitle>
<DescriptionText>This work item was created by Team ➥

Build on a build failure.</DescriptionText>
<BuildlogText>The build log file is at:</BuildlogText>
<ErrorWarningLogText>The errors/warnings log ➥

file is at:</ErrorWarningLogText>
</PropertyGroup>

From here it is obvious that many of these values came directly from the configuration that
you created in the wizard earlier in this chapter. Also note that the first element in this file imports
the file that will define the build process, Microsoft.TeamFoundation.Build.targets. When you
perform a team build, you are actually executing the EndToEndIteration target. How can you cus-
tomize this process? You can customize this in the same way you extended the normal build
process in previous chapters. This is because Team Build uses MSBuild to perform the builds. In
the next section, you will learn about some of the steps you can perform with this process.

Extending the Team Build
You previously learned how to extend the build process when you build a project or solution
locally. To do this, you used MSBuild to inject steps into the build process. A team build is no
different; it has a default way of building team projects, and you are free to extend or modify
this process as much as you want. In fact, you can completely replace it if you want. Since you
know how to use MSBuild, we don’t need to cover the details of how to write an MSBuild target
for Team Build. You simply need to know how and where to inject the appropriate steps into
the Team Build process. You will want to place all modifications in TFSBuild.proj. You will have
to check this file out to edit it and check it in to make the change take effect. You can also place
the modifications in files that get imported into TFSBuild.proj. Remember to check in
TFSBuild.proj and all other files that you would like imported into it.

You have a few ways to inject your steps into the process that will build your team projects.
(We will cover the different methods and discuss the pros and cons of each. This is similar to
some material that was discussed in previous chapters.) Many targets are already wired into
the build process but have no steps contained within them. For example, before the project is
compiled, the BeforeCompile target is invoked. In the Microsoft.TeamFoundation.Build.targets
file, this is an empty target. The simplest way to extend the Team Build process is to define those
targets. In Table 5-3, you’ll find a list of these “empty” targets. These appear in the order they
are defined in the Microsoft.TeamFoundation.Build.targets file.

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD128

Table 5-3. Team Build Targets Designed to Be Overridden

Name Description

BeforeEndToEndIteration EndToEndIteration is the target that drives the whole build
process. Override this to perform some action before the entire
process.

BuildNumberOverrideTarget If you do not like the default build numbering provided by Team
Build, then you can override it in the target. You’ll need to create
a custom task that outputs a property named BuildNumber. This
will be used for your build number.

AfterEndToEndIteration If you need something to occur after everything is completed,
you can override this target.

BeforeClean Called before the workspace is cleaned up. In this target you
may want to perform some custom clean steps.

AfterClean Called after the workspace has been cleaned; you can also
perform some custom cleaning steps here as well.

BeforeGet Called before the sources are gathered from source control. In
this step you could get some other files from source control if
necessary.

AfterGet Called after the sources have been copied from source control. If
you wanted to change the assembly version before the build
process, you could do that here.

BeforeLabel During a team build, the sources are labeled; this is the target
before that process. If you modified any file previously in the
build process, you could check them all in at this point.

AfterLabel Called after the source tree has been labeled.

BeforeCompile Called before the projects are compiled.

AfterCompile Invoked after the projects have been compiled.

BeforeTest This is called before the test cases in the projects are executed. If
there were extra steps to set up your test cases, you could
implement those steps in this target.

AfterTest If you would like for some actions to take place after the tests are
completed, such as creating summaries of the tests, then you
could implement those here.

PackageBinaries This target is to assist you in deployment; if you wanted to create
a zip file of the binaries (or CAB files), you could do that here. If
you’d like for these binaries to be located on the drop site, make
sure you place them under the BinariesRoot folder.

BeforeDropBuild The target called immediately before the build is placed in the
drop site. If you’d like for other files to be copied to the drop site,
this is your last chance to place them under BinariesRoot for
copying.

AfterDropBuild This is called immediately after the files are copied to the drop
site. If you wanted to verify that the files made it there, you could
implement that in this target.

BeforeOnBuildBreak When an error occurs, this is the first target that gets called. You
could perform any necessary error correction steps here, such
e-mailing admins or creating additional work items.

AfterOnBuildBreak Last target that gets called after an error occurs.

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD 129

By overriding one of these targets, you can easily extend the build process for your team
build. We personally do not like overriding these targets, even though they’re there for that sole
purpose. As discussed in an earlier chapter, by overriding these targets you expose the poten-
tial for a difficult-to-locate hole in your build process. This hole would pop up when the same
target is defined in more than one place for the same build. For instance, if the BeforeCompile
target is overridden twice, only one implementation can exist; therefore, one is thrown away.
This may not seem like a real possibility, but for projects with sophisticated builds, this can
happen. Whenever possible, you should write MSBuild extensions that are generic and safely
reusable. Implementations that override targets such as these are not safely reusable. To avoid
this, you will use another technique.

Instead of implementing the predefined targets from Table 5-3 to extend the build
process, you should inject your own targets into the build process. Many TFS targets specify
the DependsOnTargets value with a list of targets; these targets will be executed before the tar-
get that is attached to it. Most of these targets extract this definition from a property, which
you can extend to include your own targets. For instance, the following fragment is from the
Microsoft.TeamFoundation.Build.targets file:

<PropertyGroup>
<TeamBuildDependsOn>
InitializeBuild;
PreBuild;
Compile;
PostBuild;
Test;
PackageBinaries;

</TeamBuildDependsOn>
</PropertyGroup>
<Target Name="TeamBuild"

Condition=" '$(IsDesktopBuild)'!='true' "
DependsOnTargets="$(TeamBuildDependsOn)" />

TeamBuild is a target that will be invoked during your public build process. This target
actually does nothing! It just defines the target that must be executed before it. If you want
to add your own steps to this list, you can do something like the following:

<PropertyGroup>
<TeamBuildDependsOn>
CustomBeforeTeamBuild;
$(TeamBuildDependsOn);
CustomAfterTeamBuild;

</TeamBuildDependsOn>
</PropertyGroup>

<Target Name="CustomBeforeTeamBuild">
<Message Importance="normal" Text="This is BEFORE the ➥

TeamBuild target gets invoked"/>
</Target>

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD130

<Target Name="CustomAfterTeamBuild" >
<Message Importance="normal" Text="This is AFTER ➥

the TeamBuild target finishes executing"/>
</Target>

This fragment is placed in the TFSBuild.proj file, after the import statement for Microsoft.
TeamFoundation.Build.targets. In the property group at the top of this fragment, you are
defining the TeamBuildDependsOn property. You are getting the current definition for the property
itself with $(TeamBuildDependsOn) and adding to it. Since this is after the import statement, you
know that this property has already been defined. Following this property declaration, the two
targets are defined. These targets simply print messages to the log. To verify that these customiza-
tions worked, you must check in the TFSBuild.proj file and begin another team build. The following
is a portion of the log that demonstrates its effectiveness:

Target CustomBeforeTeamBuild:
This is BEFORE the TeamBuild target gets invoked

Target InitializeBuild:
Creating directory "F:\Build\Codus\Adapdev\Daily Codus ➥

build\BuildType\..\Sources".
...
...

Target GetChangeSetsAndUpdateWorkItems:
GenCheckinNotesUpdateWorkItems TeamFoundationServerUrl= ➥

"http://sayed-ws2003:8080/" CurrentLabel="LDaily Codus build_20060109.3 ➥

@$/Adapdev" LastLabel="LDaily Codus build_20060105.3@$/Adapdev" ➥

UpdateWorkItems=True BuildId="Daily Codus build_20060109.3"
Querying the contents of label 'LDaily Codus build_20060105.3@$/Adapdev'.
Querying the contents of label 'LDaily Codus build_20060109.3@$/Adapdev'.
Analyzing labels LDaily Codus build_20060105.3@$/Adapdev and LDaily ➥

Codus build_20060109.3@$/Adapdev.
Querying item history.
Changeset '56' was included in this build.
Changeset '57' was included in this build.
Changeset '58' was included in this build.

Target CustomAfterTeamBuild:
This is AFTER the TeamBuild target finishes executing

As you can see from the previous snippet of the build log, your custom targets were exe-
cuted successfully from the team build. You can extend a series of these DependsOn properties,
as listed in Table 5-4.

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD 131

Table 5-4. Available DependsOn Properties

Target Name DependsOn Property Name

EndToEndIteration EndToEndIterationDependsOn

InitializeWorkspace InitializeWorkspaceDependsOn

Clean CleanDependsOn

TeamBuild TeamBuildDependsOn

Test TestDependsOn

PostBuild PostBuildDependsOn

PackageBinaries PackageBinariesDependsOn

DropBuild DropBuildDependsOn

OnBuildBreak OnBuildBreakDependsOn

CopyLogFiles CopyLogFilesDependsOn

Using this method, you can confidently and safely extend the process that is executed
when your public build takes place. When doing this, you must ensure that these declarations
are after the import statement for the Microsoft.TeamFoundation.Build.targets file; otherwise,
your changes will be overwritten.

Now you will look at how you can customize what happens after an error occurs during
the build.

Handling Errors During a Team Build
Just like performing a normal build, you always have the possibility that errors will occur;
arguably this possibility is actually higher when using Team Build. Handling an error during
a team build is different from handling an error during a normal build, however. During the
course of a normal desktop build, your main goal is to ensure that the person performing the
build is notified that the error has occurred so that it can be resolved. If an error occurs during
a team build, this affects the entire team, so you must ensure that the appropriate people get
notified to correct the problem and that it is corrected as soon as possible.

When your team project is being built, a special target will be called if the build breaks.
That target is OnBuildBreak. Typically, this target will create a new work item to have the build
error resolved and drop the files at the drop location. But you may want to extend this process
to increase awareness of the build failure. For instance, you may want to send an e-mail to the
project manager or log the build error somewhere else.

Sometimes you would like to extend or replace how a build error is handled. To facilitate
this, you first must know the default error-handling mechanism. When you invoke a team build,
most of the work actually takes place in the CoreCompile target. This target will set up each
project for building. This includes creating output directories, initializing properties, and gen-
erating items. It also includes executing the Build target on each project in the team project.
Each of these projects will be built in their own instance of MSBuild. If a true build error occurs,
then it will occur in this target. As discussed in a previous build, you can specify targets to exe-
cute if an error occurs during the execution of a target. You do this using the OnError element.
This has to be the last statement of the target. If you look at the bottom of the CoreCompile target,
located in the Microsoft.TeamFoundation.Build.targets file, you’ll notice the statement

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD132

<OnError ExecuteTargets="OnBuildBreak;" />. This states the OnBuildBreak target will be
invoked if an error occurs during the CoreCompile target. Now you will look at the OnBuildBreak
target.

As mentioned previously, the OnBuildBreak target is invoked by MSBuild if an error occurs
during the CoreCompile target. This target, like many other useful targets, actually does nothing!
The purpose of this target is to simply invoke other targets to be executed in the correct order.
Refer to the following fragment from the Microsoft.TeamFoundation.Build.targets file:

<PropertyGroup>
<OnBuildBreakDependsOn>
BeforeOnBuildBreak;
GetChangeSetsOnBuildBreak;
DropBuild;
CreateWorkItem;
AfterOnBuildBreak;

</OnBuildBreakDependsOn>
</PropertyGroup>

<Target Name="OnBuildBreak"
Condition=" '$(IsDesktopBuild)'!='true' "
DependsOnTargets="$(OnBuildBreakDependsOn)" />

As you can see, the OnBuildBreak target simply dictates which other targets get executed,
and in what order, by its DependsOnTargets list. Table 5-5 summarizes those targets.

Table 5-5. Dependent Targets of the OnBuildBreak Target

Target Name Summary

BeforeOnBuildBreak This is an empty target that is designed to be overridden; it’s
simply a placeholder.

GetChangeSetsOnBuildBreak This gets the associated change sets, but obviously the FixedIn
field will not be modified during a good build.

DropBuild This places the build files that were generated on the drop location.

CreateWorkItem This creates a work item for the build error.

AfterOnBuildBreak This is an empty target designed for overriding.

From these targets, you can override two of them to add custom functionality; those are
BeforeOnBuildBreak and AfterOnBuildBreak. As mentioned, even though this approach will
work, a better method is to inject your target by extending the dependency list; in this case,
that list is defined by the OnBuildBreakDependsOn property. An example of this is as follows:

<PropertyGroup>
<OnBuildBreakDependsOn>
CustomDoBeforeBuildBreak;
$(OnBuildBreakDependsOn)

</OnBuildBreakDependsOn>
</PropertyGroup>

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD 133

<Target Name="CustomDoBeforeBuildBreak">
<!-- Insert your custom error handling here -->

</Target>

For this to work, you have to place this declaration in the TFSBuild.proj file after the
import statement for Microsoft.TeamFoundation.Build.targets. Once again, in the case that
the OnBuildBreakDependsOn is overridden many times, this technique is safe because you are
always adding to the list instead of overwriting it. For more specific information regarding
error handling, refer to the previous chapters, which contained many examples.

Automating Team Build
Since we have already defined what a public build is and you have dedicated resources for this
purpose, it only makes sense to automate this process. When you are developing large projects,
this is a critical part of the development plan. It is critical that you detect when a public build
error has occurred and resolve it before any further damage can be done.

You can use a simple command-line utility to build your team projects. This command-line
utility is tfsbuild.exe and is installed on the TFS machine. You can use this command-line utility
with the Windows Task Scheduler (or the schtasks command) to run this build on a regular
basis. In this section, you will first learn how you can run a build using the command line, and
then you will learn how to schedule it.

You can find the tfsbuild.exe file on the TFS machine in the %ProgramFiles%/Microsoft
Visual Studio 8/Common7/IDE directory. This utility can perform three major operations: starting
a build, deleting completed builds, and stopping a build that is in progress. Here we will discuss
only how to start a build. To start a build, you will use the tfsbuild.exe start command. This
command has five parameters, as summarized in Table 5-6.

Table 5-6. tfsbuild.exe start Parameters

Name Summary Required?

TeamFoundationServer This is the name of the TFS server you want to use for Yes
this build.

TeamProject Name of the team project to build. Yes

BuildType Build type for this build. Yes

Machine Machine to use for the build. Only necessary if different No
from the machine name specified in the build type.

Directory Directory on the build machine where the build is to No
take place. Only necessary if different from directory
specified in the build type.

The syntax for the command is as follows:

tfsbuild.exe <TeamFoundationServer> <TeamProject> <BuildType> ➥

[/m:<Machine> /d:<Directory>]

From this syntax to kick off your Daily Codus build for the Adapdev team project, you
would use the following statement:

tfsbuild.exe start sayed-ws2003 Adapdev "Daily Codus Build"

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD134

After executing this, you get the following result:

>tfsbuild.exe start sayed-ws2003 Adapdev "Daily Codus Build"
Microsoft (R) TfsBuild Version 8.0.0.0
for Microsoft (R) Visual Studio 2005 Team System
Copyright (C) Microsoft Corporation 2004. All rights reserved.

Build number: Daily Codus Build_20060111.1
Initializing build
Getting sources
Compiling sources
Compiling Codus.sln for Any CPU/Release
Compiling Codus.GUI.Extensions.csproj
Compiling Codus.Templates.Adapdev.csproj
Compiling Codus.Templates.NHibernate.csproj
Compiling Codus.GUI.csproj
Generating list of changesets and updating work items
Copying binaries to drop location
Copying log files to drop location
Successfully Completed

From this output you can see the build was successfully completed, and you can see
which projects were included in the build process. This output is purposefully brief. To verify
that the build did indeed take place and was registered with your TFS, you can examine the
Daily Codus build from the Team Explorer. Now we will discuss how to automate this using
the Windows Task Scheduler, also known as Scheduled Tasks.

The Windows Task Scheduler allows you to schedule tasks that should execute on a regular
basis. To access this utility, you can open it via Start ➤ Programs ➤ System Tools ➤ Scheduled
Tasks. This opens the Scheduled Tasks dialog box. Select File ➤ New to create a new scheduled
task. This adds a blank task to the scheduled tasks. To edit this task, simply double-click it. You
can configure many different properties of how you want the task to be run.

To make this process easier, you can wrap up the command to start the build into a batch
file. You simply place the previous statement in a BAT file and place it on the TFS. You can actually
place this on other machines, but in this scenario you are actually placing it on the TFS machine.
This file is named startCodusBuild.bat. By doing this it is easy to modify the build parameters
or to even run other builds. Then you use the command to schedule the script to be run. From
the configuration for the scheduled task, give the parameters shown in Figure 5-21.

CHAPTER 5 ■ INTRODUCING TEAM FOUNDATION SERVER AND TEAM BUILD 135

Notice here that you specify the user who will run this scheduled task to be the TFS user;
in this case, this user is named TFSSERVICE. If you don’t know this value, consult with the person
who installed TFS on that machine. On the Schedule tab, you specify the time you want to run
(2 a.m.) and that you want it to execute each night. Following this, the build will run each night
at 2 a.m., and the team will have a fresh build report waiting for them in the morning. For this
to work, you must have the Windows Task Scheduler running on the machine that is scheduling
this task. You can check the status of this service by running the services.msc MMC snap-in to
open the Windows Services utility. From there you can configure the Windows Task Scheduler.

Summary
In this chapter, we introduced many new topics, the most important being Team Build. Team
Build is flexible because it is built on top of MSBuild. Also, you can reuse your knowledge of
MSBuild to fine-tune your team build process. Covering the new topics that were addressed
here in great detail is outside the scope of this chapter, but it certainly has given you a starting
point to creating a solid public build on which your team can rely.

If you are working on enterprise applications, then it is essential that scheduled, automated
builds are part of your process. By using TFS and Team Build, you are able to do this simply and
easily. Not only is it easy to create an automated public build process, but it also integrates with
the other components available in Visual Studio. You no longer have to rely on hooking up many
different third-party tools to achieve this.

Figure 5-21. Codus build scheduled task configuration

137

C H A P T E R 6

■ ■ ■

Deploying Smart Clients with
ClickOnce

Over the course of the past 15 years, technology decision makers (CTOs, architects, and so on)
have bypassed thick clients in favor of thin clients. When you look at the benefits of a thin client
versus a thick client (Table 6-1), you can see that even though a thick client is more powerful,
organizations still choose thin clients because of easy deployment and global reach. That is,
because thick clients are more difficult to deploy, companies choose to give up the rich controls,
dynamic user interface, local resource access, and so on, for easy deployment.

Table 6-1. Benefits of a Thick Client vs. a Thin Client

Feature Thick Client? Thin Client?

Rich functionality* Yes No

Dynamic user interface Yes No

Offline support Yes No

Uses desktop resources Yes No

Global reach No Yes

Easy to deploy No Yes

*Thick client applications often have controls that offer more functionality than their Web-based counterparts.
For example, it’s not uncommon to see thick clients with grid controls that support shuffling columns; it is,
however, uncommon to see the same functionality in thin clients.

This begs the question: if thick clients are so much better than thin clients, why didn’t
someone come up with a solution earlier? The truth is, Microsoft has been working toward
this solution for, probably, more than ten years. The difficulty with thick clients is that they
have to be installed on the user’s machine, and this introduces several problems:

• How do you do updates?

• How do manage versions?

• How do you avoid DLL Hell?

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE138

Figure 6-1. Side-by-side deployment

To solve all of these issues, Microsoft had to come up with a solution that solved the DLL
Hell problem first. The solution is called side-by-side deployment and was introduced with
Windows XP1 (we’ll talk about side-by-side deployment in the next section). With this in place,
Microsoft then introduced Web-based deployment with the initial release of .NET, called no-touch
deployment (NTD). NTD unfortunately was well short of a satisfactory solution, as you’ll see
in the later “No-Touch Deployment” section, but it set the groundwork for a suitable solution—
ClickOnce.

In the next sections, we will discuss side-by-side deployment and then touch on the previ-
ous deployment methods for Windows Forms applications.

Introducing Side-by-Side Deployment
The purpose of side-by-side deployment is to allow application authors to safely deploy and
update applications/assemblies while allowing assemblies to be shared safely. Windows XP
does this by supporting two key features: side-by-side assemblies and isolated application
installation. Support for side-by-side assemblies allows multiple versions of an assembly to be
installed and run at the same time. Support for isolated applications ensures that the installation
of one application does not affect an application that is already installed.

The benefits of side-by-side deployment are as follows:

• Applications written, and tested, against a specific assembly are executed against the
same assembly.

• You can deploy an application by simply using an xcopy mechanism.

• Installing an application no longer requires a reboot.

Side-by-side deployment relies on components, and applications use metadata to describe
themselves rather than the registry (which is what previous versions of Windows recommended).
Moreover, shared assemblies go into a well-known folder, %WinDir%\WinSxS, where they are
managed by version. Side-by-side deployment exploits the idea of self-containment, as depicted
in Figure 6-1.

1. Side-by-side deployment was actually introduced in Windows 98 but had some shortfalls and was not
accepted as a formal solution.

The side-by-side deployment concept introduced in Windows XP has also been implemented
in the CLR in the .NET Framework. This means with .NET you also use side-by-side deploy-
ment and xcopy to deploy .NET applications. Thus, you get all the benefits of side-by-side
deployment discussed earlier.

A typical .NET deployment will have an executable, an application configuration file
(MyApp.exe.config), a few private assemblies, and zero or more references to shared assem-
blies.2 With .NET, shared assemblies go into the GAC, not WinSxS.

Looking at the Previous Approaches of Deploying
Windows Forms Applications
We will now cover how people have deployed Windows Forms applications in the past. We’ll
discuss only two relevant approaches here, even though others exist, simply because the oth-
ers are either variations or combinations of these two. The two methods we will discuss are
MSI deployment and NTD. We’ll start with MSI.

MSI Deployment
In the early 90s, Microsoft saw that organizations were building custom solutions to deploy
their thick client applications, so it surveyed a score of clients about what problems they faced
with deployment and what they would like to see in an installer solution. With that information
in hand, Microsoft built and then released MSI in 1999.3 MSI is an operating system component
that uses a well-defined standard to describe a deployment. Table 6-2 outlines the benefits and
shortfalls of an MSI solution.

Table 6-2. Advantages and Disadvantages of Using an MSI Solution

Advantages Disadvantages

Can install to the GAC. Requires that you get the MSI to the client somehow.

Can install Windows services and Requires administrator privileges.
Component Object Model
(COM) components.

Can write to the registry. Users generally have to go through a wizard with
many steps.*

Can deploy a database and create
Open Database Connectivity (ODBC).

The MSI can create databases,
shortcuts, and so on.

Allows custom actions to control
every step of the deployment.

Built upon a well-known standard.

Can create Windows
Installer Transforms (MST).

* Note that you can automate the installation of MSI solutions using tools such as IntelliMirror in Active
Directory.

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE 139

2. An assembly has zero or more dependent assemblies, and references to these assemblies are stored as
metadata within the assembly. The .NET Framework SDK comes with a tool, ILDASM.exe, that you can
use to verify this.

3. Windows Installer became an operating system component starting with Windows 2000.

As you can see, an MSI solution has a lot of advantages and only a few disadvantages. The
primary shortfalls with MSI, however, are that you have to get the MSI to your clients for them
to install your application and you have to be an administrator to run the installer.

You’ll see how ClickOnce does a much better job shortly.

No-Touch Deployment
NTD enables Windows Forms applications to be deployed in a manner similar to how thin clients
are deployed; thin clients are deployed by copying the application to a Web server, and then users
can access the application via a uniform resource locator (URL). Similarly, smart clients can be
deployed by copying the application to a virtual directory on a Web server and then distributing
a link that points to the executable. When the user clicks the link, Internet Explorer (IE) down-
loads the application to the user’s machine and then tells a special executable (IEExec.exe)
to run the application. The beauty behind NTD is that it does not require application authors to
touch the client machine in order to deploy the application, which is where it gets its name,
no-touch deployment. This is also true for updates; to do an update, you simply copy the new ver-
sion of the application to the server, and the next time the application is launched, IE checks
for a newer version—and voila! Figure 6-2 shows NTD.

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE140

Figure 6-2. NTD architecture

4. For more information about the GAC, see http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/cpguide/html/cpconglobalassemblycache.asp .

5. You can check the contents of the GAC download cache by running the GAC utility with a specific
command-line switch (such as GACUTIL /LDL).

Figure 6-2 shows that a client makes a request to a Web server for an executable, and the Web
server sends the response with a particular Multipurpose Internet Mail Extensions (MIME) type
that IE knows about (IE versions 5.01 and newer). This MIME type indicates to IE that the requested
executable is a .NET assembly. When it sees this, IE downloads the application and kicks off
IEExec.exe to launch it. Figure 6-2 also shows that the application is potentially downloaded to
several places: the GAC4 download5 and the browser cache (Temporary Internet Files). Note

also that for NTD to work, the client has to have the .NET Framework installed. Table 6-3 covers
the advantages and disadvantages of NTD.

Table 6-3. Advantages and Disadvantages of No-Touch Deployment

Advantages Disadvantages

Easy to deploy. Requires Internet Explorer greater than 5.0 and doesn’t work
with non-Microsoft-friendly browsers.

Easy to update. Application runs in the code access security (CAS) sandbox, so
you lose a lot of the advantages of having built a Windows
application. For example, the application cannot use the disk,
the printer, interoperate with Microsoft Office, and so on.

User does not have to be an The entire application has to be downloaded prior to
administrator to install the running the application.
application, which is generally
the case with thick clients.

There is no support for install-time actions. For example, you
can’t create shortcuts at install time.

It’s virtually impossible to work offline.

Resembles a Web application because users are clicking a link.

The client has to have the .NET runtime on their machines
prior to downloading the application.

Deploying smart clients with NTD has some drawbacks. Notably, because the application
is downloaded from an unknown source, the application is treated as potentially malicious and
has to run within the CAS sandbox. This prevents the application from using local resources (such
as a printer), so the application is limited in its functionality. Conversely, the application is easy
to deploy and update; when the user clicks the link, if a new version of the application is avail-
able, it is downloaded, and the new version is launched.

As you can see, NTD is restrictive and best suited for applications that do not require
interaction with local resources. This removes a lot of the benefits of building smart clients;
however, you do get the responsive user interface with ease of deployment.

Now we’ll discuss the updater application block.

The Updater Application Block
The updater application block6 (UAB) is a flexible and scalable application updater compo-
nent. It is easy to use and provides the options needed when deploying large-scale distributed
applications. For example, for a large application it may be necessary to download large bina-
ries and be able to monitor their download progress. The UAB provides this flexibility while not
intruding on smaller applications that need to be easy to use. Figure 6-3 shows a high-level
architecture of the UAB.

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE 141

6. You can get the latest version of the updater application block from http://www.microsoft.com/
downloads/details.aspx?FamilyID=C6C09314-E222-4AF2-9395-1E0BD7060786&displaylang=en.

How the UAB Works
At a high level, the UAB sits on the client machine and is responsible for detecting, downloading,
and installing application updates. Similar to ClickOnce, the UAB is driven by a manifest file
that contains an application’s dependencies (binaries, resources, and so on). When an appli-
cation is installed on a client’s machine, the UAB manifest is also installed along with the UAB.
The UAB looks at the manifest file on the local machine and compares it to the manifest on the
server to determine whether an update is available. When it detects an update, the UAB can
perform one of two tasks:

• Notify the application that an update is available, via an event-based notification system,
and subsequently download and install the update.7

• Download the update and install it silently; the client will see the new version the next
time the application is launched.

Elements of the UAB
The UAB block consists of some key elements. We already mentioned that the UAB is driven by
a manifest file. This manifest file defines everything making up the application. For example,
most applications have an executable, some dependent assemblies, and likely some resource
files (for example, some icons). The UAB has several other key elements. The UAB defines some-
thing called a controller and a bootstrapper. The controller manages the update process. This
includes starting and stopping the updater and handling events that are raised during the
update process. The UAB defines two types of controllers:

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE142

Figure 6-3. High-level architecture of the UAB

7. Note that this feature allows clients to plug into the update process and thus create customized
update solutions.

Computerwide controller: The computerwide controller is an external application that is
used to manage the update process for one or more smart client applications on a machine.
This controller is implemented as a Windows service and driven by a configuration file
that defines the applications that are going to be updated.

Application-launcher controller: The application launcher controller ensures that clients
run only the latest version of an application and nothing else. This type of controller is
useful when you want to force clients to run the latest version of an application.

The controllers mentioned here are external to the application being updated. The UAB
also provides a programmatic interface to the UAB and can be used by self-updating applica-
tions. Self-updating applications are those applications that manage the updates process but
use the UAB facilities to detect, download, and install updates. In this scenario, the UAB pro-
vides events when updates are available directly to the application, and the application reacts
accordingly. For example, when an update becomes available, the application can notify the
user of the update and allow the user to choose to install it.

We also mentioned that the UAB defines a bootstrapper. The bootstrapper is also an exter-
nal application that is used to launch the application being updated. The bootstrapper serves
two purposes:

• After an update, it ensures that the correct version of the application launches.

• It ensures that shortcuts to the application don’t break after the installation of an update.

Figure 6-4 shows the relationship between the application, the bootstrapper, and the
controller.

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE 143

Figure 6-4. The relationship between the application, the bootstrapper, and the controller

As shown, the controller contains something called an ApplicationUpdateManager. This man-
ager is the entity that knows how to detect, download, and install updates. When an update is
installed, the controller updates the bootstrapper’s config file to reflect the new installation.
When the user launches the bootstrapper, the bootstrapper looks at the config file to determine
which application to launch and then launches the application. For example, assume that ver-
sion 1.0.0.0 of an application is installed on a client’s machine. In this case, the client would have
a shortcut that pointed to AppStart.exe, and the AppStart.exe.config file would have a refer-
ence to version 1.0.0.0 of the application (see Figure 6-5).

When the user clicks the shortcut, AppStart.exe launches version 1.0.0.0 of the application.
After an update is installed, the controller modifies the AppStart.exe.config file to reflect the
new version (that is, 2.0.0.0), and AppState.exe will launch the new version the next time the user
clicks the shortcut.

The UAB is a great tool; however, it has a few problems that prevent its use at a global level.
For example, the tool uses the Binary Intelligent Transfer Service (BITS) to manage updates. This
poses a major problem because this service is not guaranteed to be installed on all operating
systems that might have a smart client running.8 As you’ll see in the next section, ClickOnce
solves this problem by using raw HTTP to distribute updates.

Introducing ClickOnce
ClickOnce is a technology that allows you to easily deploy and update smart client9 applications.
ClickOnce allows easy deployment of smart clients while removing the side effects of the pre-
vious methods of deployment. For example, traditionally people used MSI to deploy Windows
Forms applications. With an MSI-based deployment, users need administrative privileges to
install applications, and updates are difficult; updates usually require users to run another MSI,
which then wipes out the older version because you can’t have more than one version of the
application on your machine. With ClickOnce, applications are usually installed using a Web-
based model, updates are configurable, and users don’t have to be administrators to install
applications. If that’s not enough, you can install multiple copies of an application on a machine
per user.10 This is in contrast to MSI, which forces you to uninstall an application before you can
install another version.

The ClickOnce technology automates application installation, updates, and version manage-
ment. It automates installation by supporting several deployment methods that allow users to

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE144

Figure 6-5. Contents of the AppState.exe.config file

8. Note that BITS is used by Windows Update; therefore, most systems will have BITS already installed.

9. Technically speaking, you can deploy any Windows Forms or console application using ClickOnce.

10. This feature enables rolling back to a previous version of an application.

download an application to their local machine. It automates updates by allowing application
authors to define the update policy for the application and then enforces that on the client.
For example, an application author can dictate that an application should check for an update
when the application starts and, if available, download and run the new version. Note that you
can also roll back installations if necessary. ClickOnce also automates the installation of multiple
versions of the same application by installing the application in an isolated “application cache”
on the user’s machine, which is relative to the user logged in to the machine. This prevents the
installation of one application breaking another application, or another version of the same
application.

ClickOnce is an end-to-end deployment solution. It not only does a great job of installing,
updating, and versioning applications, but it also offers the little features that make an appli-
cation deployment look professional. For example, after an application deployment with
ClickOnce, the application has an icon in the user’s Start menu and an entry in the Add/Remove
Programs list. Note that nothing is added to the registry or Program Files folder since the
application is installed on a user-by-user level.

The remainder of this chapter will discuss the fundamentals of ClickOnce. We’ll start by
discussing the various methods of deployment using ClickOnce.

Introducing the ClickOnce Deployment Methods
To deploy an application with ClickOnce, you first have to publish the application to a Web
server, a file server, or some form of removable media (for example, a CD or DVD). Once pub-
lished, users can download the application to a local machine by clicking a link. Web and file-share
deployments are best suited for deployments where users have network connectivity because
the application will have to be downloaded over the network to the local machine. The remov-
able media option is best when you know your users will not have a network connection. The
default and recommended choice is definitely Web/file server deployment because this makes
updating the application a breeze (among other things).

ClickOnce applications are generally downloaded and run from the user’s machine. This,
however, doesn’t have to be the case. ClickOnce offers a deployment option where the applica-
tion can be downloaded to a temporary location on the user’s machine and run from there,
rather than being installed. With this option, there are no updates because users need connec-
tivity in order to run the application. You can think of this deployment scenario as similar to how
Web pages are downloaded by the browser and cached in temporary folders.

Introducing the ClickOnce Architecture
Figure 6-6 shows the ClickOnce architecture.

ClickOnce is driven by two XML-based manifest files called the deployment manifest and
the application manifest. Ironically, the deployment manifest has an .application extension,
and the application manifest has a .manifest extension. The deployment manifest contains
information specific to the deployment of the system as a whole, and the application manifest
captures the details specific to a version of the system. For example, if your company has deployed
three versions of its system using ClickOnce, then this means you have one deployment manifest
and three application manifests, one for each deployed version.

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE 145

The deployment manifest captures information specific to the deployment of the system
as a whole. In a deployment scenario, the deployment manifest tells ClickOnce how the appli-
cation should be deployed and updated. Figure 6-7 shows an example deployment manifest.

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE146

Figure 6-6. ClickOnce architecture

Figure 6-7. An example of the ClickOnce deployment manifest

Note that the deployment manifest tells ClickOnce whether to install the system onto the
client machine, the current version of the system, and the update policy of the system. Also
realize that the deployment manifest has some security settings, which we will talk about in
the “Introducing ClickOnce Security” section.

Another important aspect of the ClickOnce architecture, shown in Figure 6-7, is that the
.NET runtime is required on the client because ClickOnce is embedded within the runtime.11

Note that you don’t need the runtime on the server side. This goes without saying because you
can deploy ClickOnce applications from a removable media source (such as a CD).

Figure 6-8 shows an application manifest.

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE 147

Figure 6-8. The ClickOnce application manifest

The application manifest tells ClickOnce everything about a particular version of the sys-
tem. This information includes the files that make up the system (DLLs, icons, and so on) and
the security requirements of that particular version.

We’ll delve into all the details of each manifest file in Chapter 7. For now, know that ClickOnce
is integrated within Visual Studio 2005, so you won’t have to create the files yourself. Moreover,
Visual Studio 2005 comes with a tool known as the Manifest Generation and Editing tool,
mageui.exe,12 which you can use to create the deployment and application manifest files, as
shown in Figure 6-9. We’ll talk about this tool in Chapter 9.

11. Note that you can deploy the .NET runtime via an application prerequisite. We’ll talk about deploying
prerequisites in the next few chapters.

12. This tool comes with the .NET Framework 2.0 SDK. There is also a command-line version of this, mage.exe.

Seeing ClickOnce in Action
Now we’ll walk you through creating and deploying an application with ClickOnce. To create
and deploy the application, follow these steps:

1. Launch Visual Studio 2005.

2. Create a new Windows application, and call it HelloFromClickOnce.

3. Using the Form Designer, place a label on the form. Set the label’s Name property to
label1; you can do this by selecting the label and then changing the Name property
using the Properties window.

4. Create a new class library project, and call it DependentAssm.

5. Create a new class in DependentAssm, and call it SayHelloComp.

6. Add a public instance method to this class called SayHello(), and return the hello
world! string.

7. From Solution Explorer, right-click the project, and then choose Add Reference. Then,
add DependentAssm as a referenced project to HelloFromClickOnce.

8. When you created the project, Visual Studio generated a form named Form1.cs. Open
Form1.cs, and add a using statement to make SayHelloAssm visible.

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE148

Figure 6-9. The mageui.exe interface

9. In the default constructor of Form1.cs, set the label’s Text property to the string
returned by the method created in SayHelloComp:

label1.Text = new SayHelloComp().SayHello();

10. Open the AssemblyInfo.cs file under the Properties node, and set the AssemblyVersion
for both projects to 1.0.0.0, if not already set to this. You can also do this by selecting
Project ➤ Properties and clicking the Assembly Information button. Note that this is
not the deployment version.

11. Build the application.

At this point, you have a smart client application that has a dependent assembly. To
deploy the application using ClickOnce, follow these steps:

1. In Visual Studio 2005, pull down the Project menu, then choose the Publish tab, and
finally click the Publish Wizard button. You will see the Publish Wizard, as shown in
Figure 6-10.

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE 149

Figure 6-10. Stepping through the Publish Wizard in Visual Studio 2005

2. Accept the default location for the deployment. ClickOnce will create a virtual directory
at the specified location and will copy the application to the directory. Click Next.

3. Choose the Yes, This Application Is Available Online or Offline option to set the install
mode. Click Next.

4. You will now see a dialog box to sign the deployment. Leave the default, click Next, and
then click Finish to complete the deployment.

At this point, ClickOnce will publish the application and present you with a Web page in
Internet Explorer that looks similar to Figure 6-11.

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE150

Figure 6-11. Web page displayed by ClickOnce after deployment

The Web page shown in Figure 6-11 allows you to install the application to your machine.
Note that if you hold the mouse over the Install button, you’ll see the target of the button in
the status bar, which is the deployment manifest. Click the Install button, and note that you’ll
see a security warning from ClickOnce because ClickOnce doesn’t know the publisher of the
application (more about this in Chapter 7).

It is instructive to see what was installed when you published the application. Assuming
you have IIS installed locally, browse to c:\Inetpub\wwwroot\. ClickOnce should have created
a directory under wwwroot with the name HelloWorldClickOnce, and the contents of the folder
should be similar to what is shown in Figure 6-12. Note that ClickOnce created the deployment
manifest (HelloFromClickOnce.application) and the application manifest (HelloFromClickOnce.
exe.manifest). You can also see that ClickOnce created a setup.exe file, which is a bootstrapper
that can be used to ensure all of the prerequisites of your application are installed on a client’s
machine prior to installing your application. For example, if your application needs to install
SQL Server 2005 Express Edition, the bootstrapper can ensure that this component is installed
prior to running your installation.

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE 151

Updating and Versioning with ClickOnce
Now we’ll explain how updates work with ClickOnce. To do that, we’ll show how to slightly mod-
ify the component assembly and deploy the application again with a new deployment version.
Note that the deployment version is not the same as the assembly version; the deployment
version is the version you set in the deployment manifest, and the assembly version is the ver-
sion you set in the assemblyInfo.cs file. The deployment version is the version number that
ClickOnce is concerned with, and the version number in the assemblyInfo.cs file is the assembly’s
version number. In this case, you will modify the application and create another deploy-
ment version. The previous version was set to 1.0.0.0, and you’ll kick that up to version 2.0.0.0.
Recall that when you deployed the HelloFromClickOnce application, you didn’t specify any
information specific to doing updates. If you take a peek at the deployment manifest, you’ll
see that Visual Studio 2005 set the update policy to check for updates before start-up (that is,
to beforeApplicationStartup). Since you have deployed the application once already, we’ll
show how to modify the sample and publish the new version to the Web server; then you can
run the application again to see whether ClickOnce realizes that a new version is available.

To test updating with ClickOnce, modify the SayHelloComp class so that the SayHello()
method returns a different string, and build the solution. Next, modify the version number of
the deployment. Recall that when you wrote the initial version of this sample, you didn’t set
a version number. This means Visual Studio 2005 (VS 2005) by default set the version number
to 1.0.0.0. To modify the version number, you have to acquaint yourself with the Project Designer
in VS 2005. The Project Designer has three tabs specific to ClickOnce: Signing, Security, and
Publish; Figure 6-13 shows the contents of the Publish tab.

Figure 6-12. Contents of the published folder

The Publish and Security tabs allow you to customize and manage the contents of the
deployment manifest and application manifest. The Signing tab is used for code/manifest
signing. We’ll talk about this in Chapter 7. Notice that the Publish tab allows you to set the initial
deployment location, the publish version, and the install mode of the application. From the
Publish tab you can also launch dialog boxes to specify the update policy and the prerequisites
to the deployment (for example, client must have Microsoft Data Access Components [MDAC]
installed prior to installing your application). You can even customize the language presented
to the user during the install and whether the publish.htm file should be shown (see Figure 6-14);
recall that after ClickOnce installed the sample application, it launched IE with a Web page
that allowed you to install the application.

With that out of the way, increment the publish version number to 2.0.0.0,13 and then click
the Publish Now button in the Publish pane. VS 2005 will build the solution and then publish the
application to the Web server. Since you incremented the version number, VS 2005 will create
another folder on the Web server with the newer version and will also update the deployment
manifest to point to this new version (see Figure 6-15). To see whether the update is detected
by ClickOnce, go to the Start menu, and launch the application from the Program Files menu
shortcut.14

When you launch the application from the Program Files shortcut, ClickOnce detects that
there is an update to the application and prompts you to install the latest version. If you click
OK, the new version of the application is downloaded and installed to the machine, and then
the new version is launched.

We’ll get into the details of how ClickOnce does updates in Chapter 7.

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE152

Figure 6-13. The Publish tab in the Project Designer

13. You can have Visual Studio 2005 automatically increment the publish version number each time you
publish; all you have to do is select the Automatically Increment Revision with Each Publish checkbox
on the Publish tab.

14. The application icon will be placed within a menu group named after the publisher of the application.

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE 153

Figure 6-15. ClickOnce updates

Figure 6-14. The Application Files, Prerequisites, Application Updates, and Publish Options
dialog boxes

Introducing ClickOnce Security
When you deployed the sample application, you probably noticed that ClickOnce prompted
you with a security dialog box prior to installing the application. By default, ClickOnce-deployed
applications run within a CAS sandbox. This prevents the application from performing privi-
leged actions on the client if it’s not allowed to. If an application needs additional permissions,
you have two approaches for expanding the CAS sandbox or getting the permission your appli-
cation needs to perform its tasks. The first is to declare the permissions your application needs
in the application manifest. VS 2005 helps with this by providing a user interface to customize
application security via the Project Designer. With this approach, you identify what permission
you need, and when the users install the application, they are presented with a dialog box to
allow the application to be installed or not. The second approach is to use a trust license. With
this method, the application author obtains a trust license from a trust license issuer by sub-
mitting a public key. With the trust license in hand, the application publisher also signs the two
manifests and deploys the application. When the client installs the application, ClickOnce
compares the digital signatures in the manifest files against the key in the trust license (in the
background); if they match, the permissions requested by the application are granted, and the
application runs as expected, without prompting the user. We’ll cover how you can use trust
licenses in Chapter 7.

Figure 6-16 shows the Security tab in the Project Designer for HelloFromClickOnce.

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE154

Figure 6-16. Configuring application security

By default, ClickOnce-deployed applications are set to have full trust on the client machine.
With this in place, the application can do whatever it needs on the client;15 however, the client
is prompted with a dialog box to verify the installation of an untrusted application during the
install.

Customizing Deployment with the ClickOnce API
The ClickOnce technology also has a programmatic interface that you can use to customize
deployment and updates. For example, if you have a plug-in where the core of the application
is deployed initially and then users are allowed to choose optional features (plug-ins) and have
them installed on demand, the ClickOnce API can help.

To demonstrate the ClickOnce API, we’ll show how to build an application that has an
optional feature, called PluginOne, and the user can install this feature via a menu item, as
depicted in Figure 6-17.

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE 155

Figure 6-17. Using the ClickOnce API

15. Strictly speaking, the application is limited to the permissions the user has on the machine.

As shown, the application has a simple user interface: a form with two labels, a menu bar,
and a few dialog boxes. The menu bar has several menu items. The Tools ➤ Plugins ➤ Available
Plugins menu item displays the application’s optional plug-in and allows the user to install it on
demand. The other interesting menu is the About menu. When this menu item is selected, it
displays a dialog box that shows the application’s current deployment version number. Note
that the main user interface (MainForm) displays a message that says “Message From PluginOne.”
This label points to a message from PluginOne. When the application starts, it checks to see
whether the plug-in has been installed, and if so, it loads a class and gets a message from the
plug-in.

Here’s the code that shows how you can use the ClickOnce APIs:

public MainForm()
{

InitializeComponent();
CheckForPluginOne();

}
private void CheckForPluginOne()
{

try
{
Assembly asm = Assembly.Load("PluginOne");
if (asm == null)
{

throw new Exception("Failed to get reference to PluginOne");
}
msgLbl.Text = asm.GetType("PluginOne.Class1").ToString();
}
catch (Exception ee)
{
msgLbl.Text = "...PluginOne not installed.";
}

}

This scenario has several interesting tidbits. First, the ClickOnce technology defines some-
thing known as a download group (found via the Publish Wizard ➤ Application Files button).
The features of a deployment can be organized into groups, and these groups can be down-
loaded on demand or set to download initially with the application. Figure 6-17 shows that the
application assembly, WindowsApplication3, is in a group by itself, called Required; its publish
status is set to Include (Auto). This configuration tells the ClickOnce runtime that this assembly
needs to be installed in order to run the application. Second, the application also has a depen-
dent assembly called PluginOne. This assembly has been configured in a separate download group
named PluginOne, and this assembly’s publish status is set to Include, not to Include (Auto).
This tells the ClickOnce runtime not to download the assembly at install time. In Figure 6-17,
when the user chooses Tools ➤ Plugins ➤ Available Plugins, then selects PluginOne, and finally
clicks Install, the application uses the ClickOnce APIs to download and install the named group
PluginOne.

Here’s the code that shows how you can download a file group using the ClickOnce APIs:

private void availablePluginsToolStripMenuItem_Click(object sender, EventArgs e)
{

AvailablePluginFrm frm = new AvailablePluginFrm();

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE156

if (frm.ShowDialog() == DialogResult.OK)
{

If(!ApplicationDeployment.
CurrentDeployment.IsFileGroupDownloaded("PluginOne"))
{

ApplicationDeployment.CurrentDeployment.DownloadFileGroup("PluginOne");
CheckForPluginOne();

}
}

}

Note that the ClickOnce APIs are packaged in the System.Deployment assembly, and the
deployment details of an application are in classes within the System.Deployment.Application
namespace. This namespace holds the ApplicationDeployment class shown previously. This
class is used to support programmatic updates of an application. This class defines methods
to, for example, download groups synchronously and asynchronously. In this example, the
ApplicationDeployment class downloads the PluginOne group synchronously. After the down-
load is complete, the application calls the CheckForPluginOne() method to instantiate a class
from the downloaded plug-in and to call a method on it to update the label shown on the
main form.

Figure 6-17 also shows that the menu bar has a Help ➤ About menu item. When the user
clicks the About menu item, the application displays a dialog box that shows the current version
of the application. The following code uses the ClickOnce APIs to retrieve the current version of
the deployment and sets a label’s Text property:

ApplicationDeployment ad = ApplicationDeployment.CurrentDeployment;
versionLbl.Text=ad.CurrentVersion.ToString() ;

In this example, we show one of the tasks you can perform with the ClickOnce APIs is that
you can customize the deployment of your application so that not all of the application’s refer-
enced assemblies are downloaded initially. That’s just one scenario; with the ClickOnce APIs
exposed, you can take over the entire deployment process—from the user interface options to
what gets downloaded and what doesn’t. Moreover, you can also control what and how updates
are done.

Understanding the Bootstrapper
We mentioned earlier that when VS 2005 publishes an application, it can also generate a boot-
strapper that can install any prerequisites required by the application. The bootstrapper is an
executable (setup.exe) application that is published next to the deployment manifest. The job
of the bootstrapper is to check for a list of prerequisites on the client’s machine; if any of the
prerequisites are missing, then it ensures they are installed prior to running the ClickOnce
installation. VS 2005 provides a user interface, via the Project Designer, to configure the boot-
strapper with the prerequisites (see Figure 6-18).

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE 157

As shown in Figure 6-18, you can configure the bootstrapper to install one or more of the
components from the list or specify a custom component at a specific location. To configure
the bootstrapper to install a custom component, select the Download Prerequisites from the
Following Location radio button, and then click the Browse button. This opens a dialog box
that allows you to choose a location from the local file system, a local Web server, an FTP site,
or a remote Web site (see Figure 6-19).

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE158

Figure 6-19. Configuring the bootstrapper to download a custom component from a specific location

Figure 6-18. Configuring the bootstrapper with deployment prerequisites

As mentioned, the bootstrapper is an executable, and this executable has to run prior to
running the deployment manifest. There is not a process that kicks off the bootstrapper first,
so to run the bootstrapper, you distribute a link to the publish.htm page, which provides a link
to run setup.exe. After installing the prerequisites, the bootstrapper will take care of launching
the deployment manifest. The bootstrapper is not a managed executable that can be launched
from Internet Explorer like with NTD applications. Instead, the bootstrapper has to be down-
loaded and launched manually. The good news is that the bootstrapper is a small application
and will take only a few seconds to download (even over a dial-up connection). Once the boot-
strapper is downloaded, the user can run the application to install the entire product.

Summary
The focus of this chapter was ClickOnce, which is a technology that ships with the .NET
Framework 2.0 and is used to autodeploy and update Windows Forms and console applications.
ClickOnce supports three sources for where a ClickOnce application can be deployed. They
include a Web server, a file server, and some form of removable media (such as a CD).

ClickOnce is a major improvement over the previous approaches to deploying rich client
applications. ClickOnce has a rich and configurable deploy, update, and security policy. More-
over, you can use the ClickOnce APIs to customize your deployment solutions.

This chapter was a tour of ClickOnce. In the next chapter, we will go into great detail about
the concepts discussed here. Furthermore, we’ll identify what ClickOnce can’t do and how to
work around that.

CHAPTER 6 ■ DEPLOYING SMART CLIENTS WITH CLICKONCE 159

ClickOnce Updates, Security,
and the Bootstrapper

In Chapter 6, we gave you a tour of ClickOnce. We deployed a simple application and showed
how to update it. We also discussed the ClickOnce APIs and touched on security. In this chapter,
we will start to discuss the details of deploying with ClickOnce.

We will dive a bit deeper into ClickOnce by showing how you can configure an application
for automatic updates. You can take several approaches for updating an application, and we’ll
cover each approach in this chapter.

We will also talk about security issues regarding ClickOnce applications. You saw with the
sample application in the previous chapter that a user is prompted with a security dialog box
during installation if the application author is unknown. We’ll talk about how to overcome this
security prompt by looking at trusted publishers. We’ll also talk about partially trusted appli-
cations in this chapter.

In addition, we’ll cover how you can deploy prerequisites with ClickOnce. For example, if
your application depends on a Windows service, then you’ll learn how you can ensure that the
prerequisite is installed on the target machine and if not installed, how you can install it to
ensure your application runs correctly.

You’ll see all this in this chapter. We’ll start the discussion, however, by looking at the
ClickOnce deployment and application manifest files.

Understanding the ClickOnce Manifest Files
The ClickOnce deployment manifest describes everything about the overall deployment of
a system (see Figure 7-1).

161

C H A P T E R 7

■ ■ ■

The deployment manifest shown in Figure 7-1 has five higher-level tags within the
root assembly element. The assembly element is required and has the required attribute
manifestVersion. Since assembly is the root element, you also see the deployment manifest
schema1 attached to this tag. Within the assembly element, you have assemblyIdentity,
description, deployment, dependency, and Signature.

The assemblyIdentity element determines the application being deployed. This tag has
five required attributes and no child elements. The name attribute is the name for the application
being deployed. In this case, the deployment manifest was generated with Visual Studio 2005,
and it generated a default value for this tag. The version attribute determines the current deploy-
ment version of the application. The publicKeyToken is used for signing the deployment manifest,
and the processorArchitecture attribute determines the application’s processor architecture
(valid values for this tag include msil, x86, IA64, and amd64). Note also that this tag contains an
optional language attribute that determines the language that ClickOnce presents to the user
while doing the deployment. Note that this is not the application’s preferred language. The value
neutral tells ClickOnce to refer to the client’s machine settings to determine what language to
use. Finally, the assemblyIdentity element has a required type attribute. This attribute has to
have the value win32 and is used for compatibility with side-by-side deployment.

The description element describes the application. The information in this tag is used
when the application is deployed in install mode (we’ll talk about install mode in the “Offline
vs. Online Applications” section).

The deployment element determines the mode of deployment and identifies the update
policy for the application. ClickOnce applications can be deployed in one of two modes: offline
or online. Offline mode–deployed applications can run without a network connection, while
online deployments can’t. Applications that are deployed in online mode require that their
users always run the application by pointing to the deployment manifest; that is, users will
always go to a Web page and click a link that points to the deployment manifest. Additionally,
online mode requires that the client have a network connection when launching the application.

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER162

Figure 7-1. A ClickOnce deployment manifest

1. You can see the entire schema at http://msdn2.microsoft.com/en-us/library/k26e96zf.aspx.

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER 163

Online applications are downloaded (to the ClickOnce cache) every time the application is
launched. After the application is downloaded, however, there is no need for a network con-
nection, unless the application requires it (for example, to get data). Offline applications are
installed locally and executed via a shortcut from the Start menu. Moreover, this mode of
deployment does not require a network connection because the application, along with
the deployment manifest, is cached locally on the client machine. Offline-mode applications
also get versioned on the client and are available through Add/Remove Programs, just like tra-
ditional thick clients. Finally, offline applications can have various update policies (for example,
checking for updates at start-up) and are installed on a per-user basis (that is, do not require
an administrator). Note that the deployment element also has an optional attribute named
minimumRequiredVersion that can control the earliest version that can be run by clients. For
example, you could use this tag to ensure that all clients run version 1.2.7.5 of the application
and nothing older.

The subscription element within the deployment element is an optional element that
determines when to check for updates for the application. If the tag is not defined in the
deployment manifest, then ClickOnce does not check for updates for the application. Note
also that if the application is deployed in online mode, then ClickOnce will ignore this tag
because the application will always run the latest version of the application from its deployed
location (for example, the Web server). When the subscription element is defined and the
application is deployed in offline mode, then ClickOnce can be configured to check for updates,
either on application start-up or on an interval after start-up, by using the required update
element. The update element has two optional elements: beforeApplicationStartup and
expiration. To check for updates at start-up, the beforeApplicationStartup element has to
be defined within the update tag. Alternatively, you can use the expiration element to con-
struct a finer-grained update-check policy. For example, you can configure update checks to
happen on an hourly, daily, or weekly basis. Note that when using the expiration update
policy, ClickOnce checks for updates in the background while the application runs. When an
update becomes available, the user sees a dialog box to install the newest version the next
time the application is launched, not immediately.

The deploymentProvider element defines where the deployment manifest lives and where
updates come from. This may seem like overkill because the user first clicks a link to get to
the application manifest, and now the manifest has a link to itself. This turns out to be use-
ful in situations where the application is deployed outside ClickOnce but uses the update
facility provided by ClickOnce. For example, large applications can be distributed with a DVD
and can still be updated via ClickOnce by using deploymentProvider.

The dependency element determines the specifics of the application to install (for example,
the version and actual assemblies). Note that this tag actually points to the application manifest
(via the codebase attribute). An application manifest file is how ClickOnce enables application
authors to deploy and manage versions of an application on the client and the server. Applica-
tion manifest files are also XML files that end with the .manifest extension and contain everything
required by the application for a particular version. Figure 7-2 shows a sample application
manifest file.

Every version of an application has an associated application manifest file. This manifest
file defines the version number of the application, the security requirements of the application,
the dependent assemblies of the application, and so on. In other words, it tells ClickOnce
everything it needs to download and run the application on a client’s machine. As shown in
Figure 7-2, the entryPoint element defines the executable that holds the entry point method
(that is, the Main() method), and an entry exists for every dependent assembly that needs to
be downloaded to run the application. Moreover, the trustInfo tag defines all the permissions
necessary to run the application, from a CAS standpoint.

The Signature element defines a public/private key signature for the deployment. Deploy-
ment manifests and application manifests both have to be signed with the same signature to
tell the ClickOnce runtime that the same organization that published the application is the
same publisher doing updates to the application. If the signatures in the two manifest files
don’t match, ClickOnce will not allow updates.

Offline vs. Online Applications
ClickOnce applications have to be deployed to a Web server, to a file server, and/or to removable
media (such as a CD/DVD). Moreover, you can deploy these applications in one of two modes:
offline or online. Offline applications are meant to function without a network connection.
Online applications behave more like Web applications and require network connectivity.

When you deploy an application using Visual Studio 2005, you configure the deployment
mode of the application when you run the Publish Wizard (see Figure 7-3).

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER164

Figure 7-2. A sample application manifest file

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER 165

Note that after deployment, the publish.htm page shows a Run button rather than an
Install button, which you saw when you deployed the sample offline application in Chapter 6.

Also note that online applications have the install attribute’s value set to false to indicate
that the application should not be installed locally on the client. That is, it should not have
a shortcut under the Start menu or an entry in Add/Remove Programs. For example:

<deployment install="false" mapFileExtensions="true" />

Moreover, online applications don’t have a deploymentProvider element. Recall that this
tag is useful for cases when you install a very large application using a CD/DVD and then use
the deploymentProvider element to dictate where updates should come from. Since online
applications don’t have versioned updates, you do not need this tag.

Online applications don’t get installed like offline applications. However, to run the appli-
cation, the current version of the application is downloaded when you click the Run button and
is placed into the ClickOnce cache. ClickOnce creates an application cache on a user-by-user
basis for each application version (see Figure 7-4) and thus does not require administrative
permissions.

Figure 7-3. Online deployment mode

Note that the ClickOnce application cache is located at %userprofile%\Local Settings\
Apps\.

In Figure 7-4, you can see that there are a host of applications for user sayed. Furthermore,
note that the contents of the cache shown in the right pane are for the HelloFromClickOnce
application discussed in Chapter 6. The contents of the cache has .exe, .dll, .manifest, and
.cdf-ms files. It turns out that the .cdf-ms files are precompiled versions of the manifest files
and are used for performance reasons.

We’ll talk more about the ClickOnce cache throughout the discussion of ClickOnce in this book.

Performing ClickOnce Updates
ClickOnce offers automatic update support for online and offline applications. Online appli-
cations are updated when they are accessed, and users don’t have a choice of running an older
version; the latest version is downloaded and executed. With offline applications, however, you
have a lot of choices.

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER166

Figure 7-4. The ClickOnce application cache

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER 167

Configuring Update Notification
For starters, when a newer version of an application becomes available, ClickOnce notifies
users when the update check is executed (for example, beforeApplicationStartup). Users then
have a choice whether to download and run the newer version or stay with the older version
(see Figure 7-5).

To get the latest version, users have to click OK in the Update Available dialog box. If they
click Skip, the ClickOnce runtime will not show them the Update Available dialog box again for
one week. Note that this value is not configurable.2 Also, if the user doesn’t click OK or Skip
and instead closes the dialog box, ClickOnce runs the older version but then prompts the user
of an update the next time the application icon is executed from the Start menu.

Configuring Application Update Policy
You can configure the update policy of an application by clicking the Update button on the
Publish tab (accessed from the Project Designer, which is also referred to as the Project Properties
page). To see this, create a new Windows application and then select the project in Solution
Explorer. Then, pull down the Project menu and choose the Properties menu item. From the
Project Designer, click the Publish tab, and then click the Updates button. You should see the
dialog box shown in Figure 7-6.

Figure 7-5. Update detection in ClickOnce

2. ClickOnce does provide an API, however, that you can use to customize the installation and update of
your applications. We’ll talk about this later.

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER168

As shown, you can set an application to not be updated at all. If an update is configured,
the default is to check for an update prior to application start-up. You can also opt to check for
updates after the application starts. In this case, you can configure how often the update check
should run. For example, you can configure the check to run every time the application runs
or on an hourly, daily, or weekly basis. Note that with this option, users are notified that an
update is available the next time they run the application.

Note also that you can specify a minimum required version for an application. For example,
if you deploy version 1.0.0.0 and you discover a major security bug in your application, you
can fix the bug, issue a new version (say 1.1.0.0), and via this option ensure that your users are
not running the older version. Note that when ClickOnce detects a required update, ClickOnce
disables the older version and automatically downloads, and then runs, the new version (see
Figure 7-7).

Figure 7-6. Application Updates dialog box

Figure 7-7. Automatic detection and download of a minimum required version

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER 169

Application authors can also either modify the deployment manifest of the application
manually or use the Manifest Generation and Editing tool to configure updates for an applica-
tion. Note that you can open the manifest generated by Visual Studio in the Manifest Generation
and Editing tool as well. In fact, administrators can configure the application using this tool
after the application has been deployed by using Visual Studio or some other deployment tool.
Again, note that the Manifest Generation and Editing tool, and its UI counterpart, comes with
the .NET Framework 2.0 SDK.

The update policy of an application is captured in the deployment element in the deploy-
ment manifest:

<deployment install="true" mapFileExtensions="true"
minimumRequiredVersion="1.1.0.0">

<subscription>
<update>
<expiration maximumAge="2" unit="weeks" />

</update>
</subscription>
<deploymentProvider codebase=

"http://sh-9lctkbtqk3uu/HelloFromClickOnce/HelloFromClickOnce.application" />
</deployment>

You should give an application’s update configuration some thought. If an application
already performs costly operations and is taking considerable time to start, it may not make
sense to add to that time by running update checks at start-up. For applications that require
finer-grained control over doing updates, application authors can use the ClickOnce APIs to
customize installation and updates. We’ll talk about the ClickOnce APIs more in this chapter
and the next.

Understanding ClickOnce Security
One of the major problems with NTD was that the application was downloaded from the Web
and as a result was placed in a very tight security sandbox. It was so tight that the deployment
approach was virtually useless for real-world business applications. When Microsoft set out to
build ClickOnce, one of the major concerns was a practical solution to addressing security
within an application.

By default, applications deployed with ClickOnce are configured with Full Trust permissions.
You can verify this by looking at the Project Properties ➤ Security tab, as shown in Figure 7-8.
Note that the Enable ClickOnce Security Settings box is checked, along with the This Is a Full
Trust Application radio button. Note that if these buttons are not checked, you have not yet
published the application; in other words, publishing the application applies these default
settings.

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER170

Even though the application has full rights, it comes at the cost of either providing a trusted
publisher certificate from a known certificate authority or requiring your users to click through
unfriendly security warnings. The idea behind ClickOnce, however, is to not have users make
(possibly wrong) security decisions and to install an application only. You can do this in several
ways, and we’ll cover how to use a trusted publisher next.

Using Trusted Publishers in ClickOnce
ClickOnce applications use security certificates to identify the identity of an application
author (publisher) to the user installing the application. Figure 7-9 depicts the philosophy
behind security certificates.

Figure 7-8. ClickOnce Security tab in Visual Studio 2005

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER 171

As shown, a company obtains a certificate from a certificate issuing authority (such as
VeriSign) by submitting details about the company. The certificate is then handed off to the
company’s system administrators to install it on the enterprise workstations. Installation here
means placing a copy of the certificate in the Trusted Root Certificate Authority certificate store3

and the Trusted Publisher certificate store because the certificate authority’s identity needs to
be stored as well as the publisher who will be publishing applications (the company). Next, the
company gives a copy of the certificate to the developer, who signs the applications with the same
certificate. When the developer publishes the application, the ClickOnce runtime looks at the
certificate attached to the application and sees whether the certificate authority is in the Trusted
Root Certificate Authority certificate store and then sees whether the publisher is trusted by looking
in the Trusted Publisher certificate store. If all of these checks pass, the user is not prompted, and
the application is installed and executed without intervention. We’ll now show an example of
this in action.

Figure 7-9. How trusted publishers work

3. You can see the installed certificates by selecting Start ➤ Run and executing certmgr.msc.

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER172

Seeing a Trusted Publisher in Action
To see the trusted publishing side of ClickOnce, create a simple Windows application using
Visual Studio 2005. Next, open the Signing tab under the Project Designer (see Figure 7-10).

If you have not yet published the application, then by default the Sign the ClickOnce
Manifests box is unchecked. If you publish the application and then return to the Signing tab,
you’ll see the application was signed with an autogenerated certificate during the publishing
process. Instead of publishing the application, click Create Test Certificate. Visual Studio dis-
plays a password dialog box for you to associate a password with the certificate (see Figure 7-11).
Note that the password is optional, so you can just hit OK if you like. However, for real-world
applications, your certificates need to have a password associated with them; otherwise, you
run the risk of someone getting your certificate and using it to publish applications with your
identity. After you create the test certificate, Visual Studio will automatically assign a name to
the certificate and place it in your project. Referring to Figure 7-9, you have executed only the
first step in that you have obtained a certificate. Now you have to put the certificate in the
Trusted Root Certificate Authority certificate store and also identify yourself as a trusted pub-
lisher by putting the same certificate in the Trusted Publisher certificate store. To do that, click
the More Details button on the Signing tab. Visual Studio displays the Certificate dialog box,
which allows you to install the certificate in the two stores. Click the Install Certificate button
to be presented with the Certificate Import Wizard. The wizard displays a nice welcome page.
The next screen displays two radio buttons; select the Place All Certificates in the Following
Stores option, and then click the Browse button. Visual Studio then displays the Select Certificate
Store dialog box with a list of certificate stores. First add the certificate to the Trusted Root
Certificate Authorities store, and then click OK. The Install Certificate button allows you to
install to only a single store at a time, so click More Details again to install the certificate to the
Trusted Publisher store (using the same approach).

Figure 7-10. The Signing tab in Visual Studio 2005

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER 173

After installing the certificates in both stores, build the solution, and then publish the
application to your local Web server. When the publish.htm file opens, click Install to verify
that you are not prompted with a security dialog box.

We mentioned earlier that the default trust setting for ClickOnce applications is full trust.
Figure 7-8 shows that an application can specify exactly what permissions it needs (partial trust).
In the sections that follow, we will discuss partial trust applications. To do that, we’ll first pro-
vide a quick overview of CAS, which is at the heart of partial trusted assemblies.

Introducing Code Access Security (CAS)
The Windows security model we have used over the years was introduced at a time when com-
puters, software, and users were very different than they are today. For example, then we were
building stand-alone applications for an operating system that assumed only one user would
be interacting with the machine at a time. Today it’s a totally different scenario—software is
built for integration and is constructed from components with potentially many users simul-
taneously interacting with the machine. The security model applied to stand-alone applications
of the past is not granular enough to support a component-based development model. The
user-based security model gives users permissions, not code. Code gets different permissions
depending on the security privileges of the user running the application. This solution is built
on an “all-or-nothing” philosophy. With a component-based model, where components are
built in-house, purchased and linked in, and possibly downloaded from third-party vendors,
you need a more granular security model.

CAS is a component-based security model with the philosophy that if an application uses
two assemblies and one of the assemblies is loaded from the application directory and the other
is loaded from the Internet, then these two assemblies should be given different security privi-
leges. This is different from the user-based security model of the past. The user-based model
said that if two DLLs are loaded into an executable, it doesn’t matter where they were loaded

Figure 7-11. Creating and configuring a trusted publisher

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER174

from because all that matters is the user running the application. With the addition of CAS, we
have the best of both worlds; code can’t do something if the user running the code can’t, and
vice versa.

With that said, the CAS nomenclature is critical to understanding the fundamentals of
CAS. In fact, if you have a clear understanding of the terms used with CAS, you’ll have a foun-
dational understanding of CAS. Table 7-1 defines the CAS nomenclature.

Table 7-1. CAS Nomenclature

Term Definition

Permission The authority to do something. For example, this is the authority to read a file,
make a network connection, or read the registry. .NET defines 19 permission
types (see Figure 7-12).

Permission set A grouping of arbitrary permissions. .NET defines seven permission sets out of
the box (again, see Figure 7-12).

Evidence Permissions are granted based on evidence. Two types of evidence exist: origin
based and content based. With origin-based evidence, where your code comes
from determines what permissions your code gets. With content-based evidence,
your code content is signed and has a publisher certificate, and that determines
what permissions you get.

Code group Associates evidence with a permission set.

Security policy Policies define a hierarchy of code groups.

Figure 7-12. The .NET-defined permissions and permission sets

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER 175

With each permission, you have the ability to do something. A permission set contains
zero or more permissions and gives you the ability to group permissions. You use evidence to
grant permissions. Code groups connect a permission set to evidence, and a security policy is
a grouping of code groups. Security policies enable you to create customized levels of security
(for example, enterprise, machine, and so on).

CAS is fairly complex, but from a ClickOnce perspective you need to keep several important
aspects in mind. First, for an assembly to execute, it must show the appropriate evidence to the
CAS security manager. An assembly can do this implicitly or explicitly. Implicit evidence is called
origin-based evidence, and explicit evidence is content-based evidence. Origin-based evidence
uses the origin of your assembly to determine what permissions your code gets. For example, if
your assembly is downloaded from the Internet versus an intranet, then your assembly will have
varying permissions. Content-based evidence is evidence with the assembly (signed with a pub-
lisher certificate) that determines the permissions given to the assembly. Another aspect of CAS
that is important to ClickOnce is the idea that an application should define, and be granted, only
those permissions the author deems necessary to run the application. This is the principle of
“run with least privilege.”

Thus far, we’ve talked about full trust applications. You can also configure and deploy a par-
tial trust application with ClickOnce and Visual Studio 2005. In the next section, we’ll show how
this works, and then we’ll return to the idea of full trust versus partial trust later in this chapter.

Introducing Partially Trusted Applications with ClickOnce
As mentioned, the default setting for a ClickOnce application is to run as a full trust application.
Generally, it is recommended that you configure the application with the permissions required
by the application. This is known as a partially trusted application, and Visual Studio 2005 provides
the user interface for you to configure your application with specific permissions (see Figure 7-13).

Figure 7-13. Configuring a partial trust application in Visual Studio 2005

You configure a partial trust application by selecting the This Is a Partial Trust Application
radio button on the Security tab of the Project Designer. By default, there are two defined zones
with preconfigured permissions. You can, however, define a new zone if you want by selecting
Custom from the drop-down list. Applications that are deployed from the local intranet zone
will have more security privileges than those deployed from the Internet zone. When you select
a zone from the drop-down list, the included permissions for that zone display a green check
mark to the right of the permission grid. Table 7-2 shows the predefined permissions for the
local intranet and Internet zones.

Table 7-2. Available Permissions in the Local Intranet and Internet Zones

Local
Permission Description Intranet? Internet?

EnvironmentPermission Allows access to Yes
environment variables.

FileDialogPermission Allows access to the Yes Yes
Open dialog box, Save
dialog box, and Open and
Save dialog boxes.

FileIOPermission Allows read and write
access to files and
directories.

IsolatedStorageFilePermission Grants isolated storage Yes Yes
manipulation. Isolated
storage is an application-
specific storage area on
the file system.

ReflectionPermission Allows reflection on Yes
other assemblies.

RegistryPermission Grants access to the
Windows registry.

SecurityPermission Grants security permissions. Yes Yes
For example,this is the ability
to skip security verification
if you are writing unsafe code.

UIPermission Grants windowing and Yes Yes
Clipboard access.

KeyContainerPermission Grants access to key
containers. A key container
is a place to store public/
private keys.

WebBrowserPermission Grants access to a Web browser. Yes Yes

PrintingPermission Allows various printing options. Yes Yes

DnsPermission Grants yes- or no-level access Yes
to do Domain Name Service
(DNS) lookup.

SocketPermission Grants access to
manipulate sockets.

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER176

Local
Permission Description Intranet? Internet?

WebPermission Allows access to specific,
or all, Web sites.

EventLogPermission Grants access to the event log.

PerformanceCounterPermission Allows access to
performance counters.

OleDbPermission Grants access to do OLEDB.

SqlClientPermission Allows ADO.NET access to
Microsoft SQL Server.

DataProtectionPermission Allows access to encrypted
data and memory.

StorePermission Allows access to stores
that contains X.509 certificates.

The Security tab shown in Figure 7-13 contains a Calculate Permissions button and
a Properties button. You can click the Calculate Permissions button to do a static analysis of
the security permissions required by the application. Static analysis here simply means the
permission calculator can determine only those permissions that can be deduced by looking
at the references used within the application. If, for example, you load assemblies at runtime
without having specific references to these assemblies at compile time, then the security ana-
lyzer will not be able to determine the exact set of permissions required by the application.
Keep this in mind when you use this feature.

As you’re building and debugging your application, it helps if you can test the application
with the same security permissions it will be granted when deployed. Visual Studio 2005 has
a Debug in Zone feature that kicks in when you select the This Is a Partial Trust Application radio
button on the Security tab. The Debug in Zone feature simply places the application within the
CAS security sandbox, as defined by the permissions set by the application. If a security excep-
tion occurs while debugging, Visual Studio displays a security exception dialog box that allows
you to add the required permission directly from the dialog box (see Figure 7-14).

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER 177

Figure 7-14. Debug in Zone feature within Visual Studio 2005

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER178

The security exception dialog box shown in Figure 7-14 says that the application requested
a permission to do file input/output but was denied because of the security settings of the
application. The dialog box also offers some troubleshooting tips, along with a few action
links, one of which says Add Permission to the Project. Note that the Debug in Zone feature is
not a mandatory feature. You can disable this by clicking the Advanced button in the Security
dialog box and then unchecking the Debug This Application with the Selected Permission Set box.

The permission calculator in Visual Studio 2005 actually interfaces with a command-line
utility named PermCalc.exe. This utility, as the name suggests, can determine the set of per-
missions required by any managed assembly (or a list of assemblies). Interesting uses of this
tool might include determining permissions required by a ClickOnce add-in assembly.
PermCalc.exe can emit an XML file that shows the permissions required by the application.

VB .NET developers have even more to rave about when debugging partial trust applica-
tions because VB .NET has a feature called IntelliSense in the Zone. IntelliSense in the Zone
looks at the permissions set by the application and the required permissions for methods,
properties, and so on, shown in the IntelliSense drop-down list and grays out those that require
more privileges than are available to the application, as shown in Figure 7-15.

The Properties button on the Security tab displays specific details about the selected
permission in the permission grid. For example, Figure 7-16 shows the properties for
FileDialogPermission.

The Permission Settings dialog allows you to modify the permission settings for a particular
permission. For example, by default, applications deployed in the Internet zone can use the
file Open dialog box but not the Save dialog box or the Open and Save dialog box. If you mod-
ify this setting for the Internet zone, the green arrow to the right of the permission will change
to a yellow warning icon to indicate you are asking for more privileges than what are granted
for the given zone by default. Note that depending on what permission you choose, the Permis-
sion Settings dialog box will change to display the specifics for the permission.

Figure 7-15. IntelliSense in the Zone feature for VB .NET developers

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER 179

Full Trust vs. Partial Trust
In the discussion of partial trust applications, we mentioned in passing that in a corporate
environment it is recommended that you deploy partial trust applications rather than full
trust applications. The obvious questions now is, why would you want to restrict your applica-
tion and go through the pain of figuring out every little permission you need to run your
application? Why not just go with full trust and not risk missing a permission? The answer is
simply that if a malicious party overtakes your application, then the malicious party can do
only as much damage as your application. Therefore, you should configure your application with
as much granularity as possible. For example, if you need access to read a file from a folder and
don’t require write privileges, then configure the file/folder input/output permissions such that
you only read from the folder and file, without write permissions. In other words, be meticulous,
and follow the principle of “run with least privilege.”

As mentioned, the application manifest contains the application entry point, file depen-
dencies, and so on. This manifest also defines the set of permissions required by the application.
In a full trust scenario, the application says it does not have any restrictions. In a partial trust
case, each individual permission is declared. Permission requirements fall within the trustInfo
element. A sample entry for a full trust application is as follows:

Figure 7-16. Properties of FileDialogPermission

<trustInfo>
<security>

<applicationRequestMinimum>
<PermissionSet Unrestricted="true" ID="Custom" SameSite="site" />
<defaultAssemblyRequest permissionSetReference="Custom" />

</applicationRequestMinimum>
</security>

</trustInfo>

Note that the PermissionSet element has the attribute Unrestricted set to true to indicate
full trust. An example of a partial trust trustInfo element is as follows:

<trustInfo>
<security>
<applicationRequestMinimum>
<PermissionSet class="System.Security.PermissionSet" version="1"

ID="Custom" SameSite="site">
<IPermission class="System.Security.Permissions.FileDialogPermission,

mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" version="1" Access="Open" />

<IPermission class=
"System.Security.Permissions.IsolatedStorageFilePermission,

mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" version="1"
Allowed="ApplicationIsolationByUser" UserQuota="512000" />

<IPermission class="System.Security.Permissions.SecurityPermission,
mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" version="1"
Flags="Execution" />

<IPermission class="System.Security.Permissions.UIPermission,
mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" version="1"
Window="SafeTopLevelWindows" Clipboard="OwnClipboard" />

<IPermission class="System.Windows.Forms.WebBrowserPermission,
System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" version="1" Unrestricted="True" />

<IPermission class="System.Drawing.Printing.PrintingPermission,
System.Drawing, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a" version="1" Level="SafePrinting" />

</PermissionSet>
<defaultAssemblyRequest permissionSetReference="Custom" />

</applicationRequestMinimum>
</security>

</trustInfo>

Note that with a partial trust application, the Unrestricted attribute is not set. Moreover,
each permission is documented clearly.

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER180

Available Permissions vs. Actual Permissions
It is important to understand that the permissions defined in the application manifest is
what your application is given at runtime, even if you could obtain more privileges (or full trust)
via some other form of evidence (for example, a signed publisher certificate or origin-based
evidence). This is known as available permissions, via evidence, versus actual permissions,
which are defined in the application manifest. Let’s say you deploy a partial trust application
from the intranet zone. By default, applications deployed from the intranet zone have the
ReflectionPermission permission (see Table 7-2). This means you can use reflection to peek
into other assemblies. But because you don’t require this permission, you configure the appli-
cation to exclude this permission. Thus, when your application runs within the CAS security
sandbox, your application will not have this permission, even though it could have because of
its evidence. That is, even though the evidence your application possesses has more available
permissions defined, the actual permissions your application gets are what are defined in the
application manifest. Essentially, you can think of an application as being “locked down.”

Deploying Prerequisites with ClickOnce
When you get past the Hello World–type applications and have to deploy real-world apps, you
will quickly realize that complex systems depend on certain elements that have to exist on the
target machine for the application to run. It is not unlikely for an application to depend on
a component in the GAC, a Windows service, a registry entry, or a specific user account. It’s not
unlikely for an application to depend on a database on the client machine or even a specific
user or a file or a folder. For a deployment solution to be effective, you need a way to check the
prerequisites and make sure they’re installed on the target machine. In the following sections,
we will discuss bootstrapping a ClickOnce application to install the application prerequisites and
to ensure that the prerequisites exist on the client prior to installing the ClickOnce application.

Using the Bootstrapper to Install Prerequisites
When VS 2005 publishes an application, it can also generate a bootstrapper that can install
any prerequisites required by the application. The bootstrapper is an unmanaged executable
(setup.exe) application that is published next to the deployment manifest. The job of the
bootstrapper is to check for a list of prerequisites on the client’s machine and if any of the pre-
requisites are missing, then ensure they are installed prior to running the ClickOnce installation.
VS 2005 provides a user interface, via the Project Designer, to configure the bootstrapper with
the prerequisites.

You can configure prerequisites by clicking the Prerequisites button on the Publish tab; this
opens a Prerequisites dialog box. By default, Visual Studio 2005 creates a bootstrapper that checks
for the presence of the .NET Framework 2.0, as shown in Figure 7-17. You can also choose from
a list of other commonly required components, and the bootstrapper will ensure that those
components are also on the machine prior to running your ClickOnce install.

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER 181

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER182

You can configure the bootstrapper to install one or more of the components from the list
or specify a custom component at a specific location. To configure the bootstrapper to install
a custom component, select the Download Prerequisites from the Following Location radio
button, and then click the Browse button. This opens a dialog box that allows you to choose
a location from the local file system, a local Web server, an FTP site, or a remote Web site, as
shown in Figure 7-18.

Figure 7-17. Configuring prerequisites for ClickOnce applications

Figure 7-18. Configuring the bootstrapper to install a component from a specific location, other
than the vendor’s Web site

CHAPTER 7 ■ CLICKONCE UPDATES, SECURITY, AND THE BOOTSTRAPPER 183

We’ve already talked about the publish.htm page that the Publish Wizard generates, by
default, when you publish your application. The default setting also launches this file in the
browser to have the user install the application. This is the same file your users can go to in
order to install your application. This file has a built-in script that can detect the presence of
the .NET Framework 2.0 and lists the required prerequisites, along with a button to download
and run the bootstrapper. Figure 7-19 shows a section of the publish.htm page that detected
that the .NET Framework 2.0 was missing. Note the Install button; users can click this button
to install the prerequisites.

We’ll talk a lot more about the bootstrapper in Chapter 8.

Summary
We covered a lot of ground in this chapter. We started with a discussion of the deployment and
application manifest files. The deployment manifest contains details to tell the ClickOnce run-
time how to find and update the application. The application manifest contains information
specific to a particular version of the application. This manifest file tells the ClickOnce runtime
about all the dependencies of the application, the security requirements, the entry point, and
so on, of the application.

We also talked about updating ClickOnce applications. We discussed the various alternatives
available to creating an update policy. We also talked about ClickOnce security. We showed exam-
ples of creating a trusted publisher and talked about full trust applications versus partial trust
applications. We concluded with a discussion of the bootstrapper. We talked briefly about how
you can use the bootstrapper to ensure that the prerequisites of the application are installed on
the target machine prior to running your ClickOnce install.

In the next chapter, you will go deeper into ClickOnce. We’ll talk about how you can
customize your ClickOnce deployments using the ClickOnce APIs. We’ll also talk about cus-
tomizing the bootstrapper to install custom components.

Figure 7-19. The publish.htm script detects that the .NET Framework 2.0 is not installed on the
target machine.

The ClickOnce Data Directory
and Deploying Prerequisites

A ll applications need at least one assembly. Most have some support assemblies, and some
even have data files (such as additional configuration files, text files, and so on). How does
ClickOnce deal with data files? Is there any special treatment of these files? What about a file-
based database, for example? For smart client applications, it’s not rare to implement offline
support in, say, an XML-based database or a Microsoft Access database. And what about migrat-
ing this type of database from one version of an application to the next? ClickOnce treats data
files differently, and rightfully so. We’ll spend the first half of this chapter talking about deploying
data files with ClickOnce.

The second half of this chapter continues the discussion of prerequisites from the previous
chapter. This chapter dives into the prerequisites and talks about what makes up a prerequisite.
We’ll talk about two manifest files that define a prerequisite and discuss how you can write
a custom prerequisite. We’ll also show you how you can get your prerequisite to appear in the
Prerequisites dialog box in Visual Studio 2005 so you can just click a checkbox to include it as
part of your ClickOnce deployments.

Working with Application Files
Thus far you have learned how to deploy simple applications that have only a single executable.
Most applications, however, will also have one or more supporting assemblies, along with var-
ious resources (for example, an XML document). In this section, and the next, we will discuss
how ClickOnce allows you to deploy these files with your applications.

185

C H A P T E R 8

■ ■ ■

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES186

ClickOnce-deployed applications can have dependencies of all types. You can view the
dependencies of your deployment by clicking the Application Files button on the Publish tab
in the Project Designer (also referred to as the Project Properties page). Clicking this button
displays the Application Files dialog box, which lists all the files that will be deployed with your
application (see Figure 8-1).

Note that you can also view the dependencies of your application by looking at the
application manifest file.

For simple applications, you don’t have to worry about what files are downloaded; Visual
Studio and ClickOnce take care of everything for you. Other applications will require special
attention, though. For example, consider a large application that is deployed under various
licenses: Enterprise, Professional, and Standard. Users of the system can download the application
and then enter a license key to activate a particular version. In this scenario, it does not make
sense for the user to download the entire application all at once if they need only a subset of
the system. It may make more sense for you to partition the application so a user can download
each partition on demand. This particular scenario becomes more serious when you consider
the options for protecting against software piracy. For example, if you deploy the entire code
base of your application to all of your users and rely on a license to determine what modules
to enable, hackers can find ways to get around the licensing issues and enable other modules.
A better solution is to not deploy the unnecessary modules. ClickOnce offers a facility that can
assist with these types of scenarios called on-demand download. The idea behind on-demand
download is that you create groups of files and then use the ClickOnce APIs to download each
group at runtime. This approach offers the benefit of reducing the overall download—the initial
download is reduced to what needs to be downloaded to run the application, and if a piece of
functionality is not needed, it is not downloaded.

Figure 8-1. Application Files dialog box

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES 187

You configure which files get downloaded using the Application Files dialog box. As shown
in Figure 8-1, the dialog box displays a grid with three columns: File Name, Publish Status, and
Download Group. The File Name column contains the names of the files (with their extensions)
on which your application depends. The Publish Status column defines how ClickOnce treats
each file during publishing. Valid values for this column are Include (Auto), Include, Prerequi-
site, Data File, and Exclude. This column works in tandem with the Download Group column.
By default, you’ll see the values (Required) and (New . . .) in this column.

When you deploy a ClickOnce application, you can control which files get deployed with
your application. You can use the publish status of a file in combination with its file group to
control if and when the file gets downloaded. By default, application files (assemblies and
noncode files with the Build Action option set to Content) are assigned the Include (Auto)
publish status and get assigned to the (Required) file group. This indicates that the file is required
for the application to run, and thus the file is deployed automatically with the application. You
can prevent a file from being downloaded, if your application does not need it, by assigning the
Exclude status to the file. If you exclude a file, then it cannot be downloaded (even at runtime).
You can assign the Data File status to noncode files. Data files are copied to the ClickOnce data
directory, which we’ll talk about in the next section. You can include a file for deployment yet
prevent its deployment initially by creating a new file group and assigning the Include status
to it. This tells ClickOnce that the file should be downloaded with the file group at runtime using
the ClickOnce APIs. You can also assign the Prerequisite publish status to files. Files assigned
to this value are not deployed and are assumed to be on the client in the GAC. Note that you
can assign only assemblies to the Prerequisite status.

Application dependencies are stored in the application manifest when you publish your
application. Code dependencies are listed with a dependency element, and noncode dependen-
cies are listed with the file element. The following listing shows several dependency entries
from an application manifest file:

<dependency>
<dependentAssembly

dependencyType="preRequisite"
allowDelayedBinding="true">
<assemblyIdentity

name="Microsoft.Windows.CommonLanguageRuntime"
version="2.0.50727.0" />

</dependentAssembly>
</dependency>
<dependency>
<dependentAssembly

dependencyType="preRequisite"
allowDelayedBinding="true">
<assemblyIdentity name="One"
version="1.0.0.0" publicKeyToken="0A1915B84E9CE3C8"
language="neutral" processorArchitecture="msil" />

</dependentAssembly>
</dependency>
<dependency>

<dependentAssembly
dependencyType="install"
allowDelayedBinding="true" codebase="Four.dll" size="16384">

<assemblyIdentity
name="Four" version="1.0.0.0" language="neutral"
processorArchitecture="msil" />

<hash>
<dsig:Transforms>
<dsig:Transform
Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />

</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<dsig:DigestValue>

rf8bbmtjQ58tZSjaHcgQDUeO+74=
</dsig:DigestValue>

</hash>
</dependentAssembly>

</dependency>
<dependency optional="true">
<dependentAssembly

dependencyType="install" allowDelayedBinding="true"
codebase="Three.dll" size="16384" group="FGThree">
<assemblyIdentity name="Three" version="1.0.0.0"

language="neutral"
processorArchitecture="msil" />

<hash>
<dsig:Transforms>
<dsig:Transform

Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />
</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<dsig:DigestValue>

L2Wj4CQlbJ6+G5wsPpFZMXeIYFM=
</dsig:DigestValue>

</hash>
</dependentAssembly>

</dependency>
<dependency optional="true">
<dependentAssembly

dependencyType="install" allowDelayedBinding="true"
codebase="Two.dll" size="16384" group="FGTwo">

<assemblyIdentity name="Two" version="1.0.0.0"
language="neutral"
processorArchitecture="msil" />

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES188

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES 189

<hash>
<dsig:Transforms>
<dsig:Transform
Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />

</dsig:Transforms>
<dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<dsig:DigestValue>
bXWsMx1A9H42VUPZ0QNZLQCUfcc=

</dsig:DigestValue>
</hash>

</dependentAssembly>
</dependency>
<dependency>
<dependentAssembly

dependencyType="install" allowDelayedBinding="true"
codebase="WindowsApplication16.exe" size="20480">
<assemblyIdentity

name="WindowsApplication16" version="1.0.0.0"
language="neutral" processorArchitecture="msil" />

<hash>
<dsig:Transforms>
<dsig:Transform Algorithm=
"urn:schemas-microsoft-com:HashTransforms.Identity" />

</dsig:Transforms>
<dsig:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<dsig:DigestValue>

fPN0FyjxvPAkXXwSAFXbN+uJSug=
</dsig:DigestValue>

</hash>
</dependentAssembly>

</dependency>
<file name="TextFile1.txt" size="0">
<hash>
<dsig:Transforms>
<dsig:Transform
Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />

</dsig:Transforms>
<dsig:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<dsig:DigestValue>2jmj7l5rSw0yVb/vlWAYkK/YBwk=
</dsig:DigestValue>

</hash>
</file>

Note that dependencies to components in the GAC1 have a dependencyType attribute set to
preRequisite, and components not in the GAC are set to install. For GAC components,
ClickOnce will check the GAC for the specified component and will throw an error if the com-
ponent is not already installed (see Figure 8-2). For assemblies that have dependencyType set to
install, ClickOnce will download and install them. Assemblies that belong to a file group
have the group attribute set to the name of the group. Note that when you add an assembly to
something other than the default (Required) group, the ClickOnce runtime will not download
the assembly at install time, and you have to use the ClickOnce APIs to download the assem-
bly at runtime. Dependencies that have to be downloaded using the ClickOnce APIs have the
attribute optional set to true. For code dependencies, the optional attribute appears on the
dependency element, and for noncode dependencies, the attribute appears on the file element.

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES190

Note also that each dependency has a hash element. The hash element ensures that the
dependent file was not tampered with after deployment. For example, say you deploy an appli-
cation to a Web server and then sometime later someone modifies the file by injecting a virus
in the file. If ClickOnce didn’t verify the integrity of each file prior to download, it would open
the doors to deploying viruses.

Working with Data Files
Client-server applications of the past required a live connection to the server at all times in order
to function. Today, we have smart clients, and one of the philosophies behind smart clients is that
an application should function even without a connection to the back-end server. To provide
offline functionality, smart client applications need a client-side data strategy—a strategy for how
to store application state while the application is offline. That is, when the application is online,
the data is sent to the server, but when the application is offline, it needs a place to store the data
until the connection is restored. Prior to ClickOnce, developers of smart client applications had to
determine the best place to store application files (for example, offline support files). Developers
often choose to write files within their application folder, which resulted in writing files under the
Program Files directory. This manifested in the application needing admin privileges and intro-
duced complexities otherwise not needed. With ClickOnce, you have a unified storage location
called the ClickOnce data directory.

Figure 8-2. Error message indicating a missing GAC component

1. You can view the contents of the GAC by going to %windir%\assembly.

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES 191

The main form of the application displays a text box for the user to enter some text
and then click Save for Later. The user can then exit the application and return at a later
time to continue working. When the user clicks Save for Later, the application gets the path
to the ClickOnce data directory and writes a file to that directory. The application can obtain
the ClickOnce data directory in several ways:

• Using AppDomain.CurrentDomain.GetData("DataDirectory")

• Using System.Deployment.Application.ApplicationDeployment.CurrentDeployment.
DataDirectory

• Using Application.LocalUserAppDataPath

You can see the actual values that these APIs result in by clicking the View Data Directory
button in the sample application. Clicking this button opens a modal dialog box that will call
these APIs and display the results, as shown in Figure 8-4.

Figure 8-3. Sample application that demonstrates the use of the ClickOnce data directory

To explain how you can use the ClickOnce data directory to store data files, we’ll show how
to build a simple application that allows a user to enter some text into a text area and then save it
for later. The user can shut down the application and later return to continue working. Figure 8-3
shows the user interface of the application. The application is also available via a ClickOnce
deployment at http://sayedhashimi.com/downloads/book/WorkingWithDataApp/publish.htm.

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES192

Note that all three APIs have the same result. If you installed the application, your results
will be different from what is shown in Figure 8-4; ClickOnce puts the data directory somewhere
within the deployment folder, and the deployment folder is generated using an unpublished
algorithm.

The previous example was fairly convoluted to demonstrate that you can persist application
state in the ClickOnce data directory. Persisting application state, saving preferences, and
maintaining settings are some uses of the data directory. You’ll also sometimes need to deploy
files from your solution to the data directory. Files in your deployment marked as Data File are
copied to the ClickOnce data directory. The purpose of the data directory is to store state on
a user-by-user basis and on an application version level. This means if you have several users
working with an application that stores a data file in the data directory, changes made by one
user will not be visible to other users on the machine. Moreover, from a smart client perspec-
tive, this means if an application stores offline state in the ClickOnce data directory, then the
state will need to be synchronized with the back-end database server when the application goes
online. Thus, you should treat the data directory as a place to store offline state for an applica-
tion and remember to synchronize with the back-end database server when the connection is
restored. You will also need to remember to clear the state after going online to prevent append-
ing state information from online/offline sessions. Finally, realize that the content of the data
directory is meant to be managed by the application, and when the user removes the application,
the contents of the data directory for that user are also deleted.

Figure 8-4. APIs that return the ClickOnce data directory

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES 193

We mentioned earlier that smart client applications support offline capabilities and thus
need a strategy to store data on the client machine. You can use several approaches to design
a data store. In a simple application, you could use an XML file as a data store. For complex
applications, you could use SQL Server Express Edition on the client. Since we are talking about
the ClickOnce data directory, we won’t talk about SQL Server Express Edition here. Instead,
we’ll talk about using a Microsoft Access database to store application state. In this section,
we’ll show how to write a sample application called ClickOnceAndAccess where you use the
Northwind database in a smart client application. We will answer the following questions with
this exercise:

• How do you deploy an Access database with a ClickOnce deployment?

• How do you connect to the database?

• How do you merge data when you update your application?

With a traditional Windows Forms application that is deployed using a setup project, you
had the luxury of referencing the database file from anywhere on the user’s machine.2 Using
a setup project, you usually don’t need a reference to the database in your project. Instead,
you would just read the connection string from the application configuration file and use that
to connect to the database. With ClickOnce, you do have some restrictions in that you have to
include the database in your solution. This is because you need ClickOnce to deploy the data-
base along with the application. This begs the question, how do you connect to the database?
From the previous discussion, you know you are going to put the database in the ClickOnce
data directory, so to connect to the database, you’ll have to dynamically create the connection
string at runtime. Finally, the real challenge with using a local database is merging the changes
when you do updates.

For example, say you deploy version 1 of an application with version 1 of your database.
Your users play with the database, and each user makes additions to, for example, the Customers
table. When you publish version 2 of the application, you deploy version 2 of your database too.
You can’t copy your new database to the client by itself because you will lose all the changes
the client made to the older database. So, you’ll have to import the data created by the client
from the old database to the new database. How do you do that with ClickOnce? It turns out
that ClickOnce maintains up to two copies of your application (based on individual users) on
the client’s machine. When the client installs the second version of the application (with an
update), ClickOnce installs the second version of the application on the machine and keeps
the old one for rollback purposes.3 With the new install, ClickOnce creates a folder named .pre
and puts the data files from the previous version in this folder. The idea is that when your appli-
cation starts for the first time from an update, you programmatically merge the two databases.

Figure 8-5 shows the user interface of the sample application. Again, you can install the
application via ClickOnce by pointing your browser to http://www.sayedhashimi.com/downloads/
book/ClickOnceAndAccessApp/publish.htm.

2. Generally, however, the database was deployed alongside the application, under the Program Files
directory. Because applications read and write to databases, applications were forced to run with
administrator privileges.

3. When you deploy your applications using ClickOnce, you also get a rollback facility. If something goes
wrong with an install or your application acts strange after an update, users can restore the previous
version of the application via Add Remove Programs.

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES194

The application shown in Figure 8-5 displays the current set of products in the Northwind
database (deployed with the application) and allows users to add new products. The idea is
that users add new products, and when an update happens, the application copies the new
products from the old database to the new one. You can apply the same principle to handle
virtually any kind of change to the database. To that end, refer to the following code that shows
how you can implement this functionality:

public MainForm()
{

InitializeComponent();
if (ApplicationDeployment.CurrentDeployment.IsFirstRun)
{
CheckProductsTable();
}

}

As shown in the previous code, when the main form is done initializing its components,
the application checks to see whether this is the first time this version of the application is
running on the client’s machine. If so, the CheckProductsTable() method is called to synchro-
nize the products table, if necessary, which is as follows:

private void CheckProductsTable()
{

string pathToOldDB = GetPathToPreviousDatabase();
FileInfo fi = new FileInfo(pathToOldDB);
MessageBox.Show(pathToOldDB);
if (fi.Exists)
{
MessageBox.Show("Old database exists...checking products table");
// we support changes to the products table only. See whether the table
// has changed by iterating over the old products and see whether they exist
// in the new one.

Figure 8-5. Offline support and ClickOnce sample application UI

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES 195

OleDbConnection oldCon = null;
OleDbConnection newCon = null;
try
{

MessageBox.Show("connecting to old database");

oldCon = new OleDbConnection(GetConnectionString(GetPathToPreFolder()));
oldCon.Open();
MessageBox.Show("connecting to new database");
newCon = new OleDbConnection(GetConnectionString());
newCon.Open();
if (oldCon == null)
{
throw new Exception("failed to get connection to old db");
}
if (newCon == null)
{
throw new Exception("failed to get connection to new db");
}
DataSet oldDs = new DataSet("OldNorthwind");
DataSet newDs = new DataSet("NewNorthwind");
OleDbDataAdapter oldDa = new

OleDbDataAdapter("SELECT * FROM products", oldCon);
OleDbDataAdapter newDa = new

OleDbDataAdapter("SELECT * FROM products", newCon);
oldDa.Fill(oldDs);
newDa.Fill(newDs);
// iterate over the old products
int newProd = 0;
MessageBox.Show("iterating the rows");
foreach (DataRow oldDr in oldDs.Tables[0].Rows)
{
// see whether the product is in the new products table
if (!IsRowInNewProductsTable(oldDr, newDs.Tables[0].Rows, newCon))
{

MessageBox.Show
("have to insert product " + oldDr["ProductName"] as string);

InsertProduct(newCon, oldDr);
newProd++;

}
}
MessageBox.Show("Add " + newProd + " to database");

}
catch (Exception ee)
{

MessageBox.Show(ee.Message);
}

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES196

finally
{

oldCon.Close();
newCon.Close();

}
}
else
{
MessageBox.Show("old db does not exist");
}

}

As mentioned earlier, when ClickOnce installs an update to an application, it copies all the
data files from the previous version’s data directory into the new version’s data directory. Click-
Once then performs a check to see whether the data files in the new version’s data directory have
a hash that is different from the ones in the older version.4 If so, ClickOnce moves the file from
the data folder into the .pre folder within the data directory and then downloads the newer
version of the file from the server. The application can then use the files in the .pre folder for
migration purposes. Referring to the earlier CheckProductsTable() method example, the method
checks to see whether there is a version of the database file in the .pre folder within the data
directory. If so, it knows it has to copy new records from the older database into the new one.
If it finds that the database file is in the .pre folder, it creates database connections to the two
databases, iterates over the rows in the older products table, and checks to see whether that prod-
uct is in the new products table. If not, the method adds the row to the new products table. For
testing purposes, you can download the source code to the application at http://sayedhashimi.
com/downloads/book/ClickOnceAndAccessApp/ClickOnceAndAccess.zip.

Applications that use data files that require migration from one version to another will
likely require more robust implementations than what we have shown. The approach used in
the sample application is to perform a test at application start-up to see whether a new version
is running and if so, look for new products to import. This approach certainly works, but for
complex applications where many files may be involved with complex migration strategies,
a better approach may be necessary. For complex cases, the ClickOnce APIs can prove to be
helpful. Although the APIs are somewhat limited, the functionality exposed is generic and can
scale for complex solutions.

With this in mind, Figure 8-6 and Figure 8-7 show the UI for the next sample application
that demonstrates several of the important methods and properties exposed in the ClickOnce
APIs. Specifically, Figure 8-6 shows the Application Info tab.

4. ClickOnce actually compares the hash of the data files in both data directories with what is listed for
each file in the newer version’s application manifest.

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES 197

The Application Info tab presents a Get Application Info button. Clicking this button
displays deployment details about the application using the ClickOnce APIs.

Figure 8-7 shows the Update Info tab.

Figure 8-6. Using the ClickOnce APIs to get application information

Figure 8-7. Using the ClickOnce APIs to get update details about an application

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES198

The Update Info tab displays several buttons across the top of the page: Check for Update,
Download Update, and Cancel. The Check for Update button is always enabled and can be used
to detect updates to the application. Clicking this button performs an asynchronous check for
an update and displays update details when an update is available. The Download Update
button is enabled only when an update is available. Note that if an update is available, the
user can download the update by clicking the Download Update button. The update takes
place asynchronously in the background.

The sample application also demonstrates a logging technique that might be useful when
getting started using the ClickOnce APIs. The sample application logs important progress events
in a text area so the user can view what is happening in the background while the application
is updating or the update checks are taking place.

The following code shows the implementation of this application:

public MainForm()
{

InitializeComponent();
// add event handlers
ApplicationDeployment appdep = System.Deployment.
Application.ApplicationDeployment.CurrentDeployment;

appdep.CheckForUpdateProgressChanged += new
DeploymentProgressChangedEventHandler(appdep_CheckForUpdateProgressChanged);
appdep.CheckForUpdateCompleted += new
CheckForUpdateCompletedEventHandler(appdep_CheckForUpdateCompleted);
appdep.DownloadFileGroupCompleted += new
DownloadFileGroupCompletedEventHandler(appdep_DownloadFileGroupCompleted);
appdep.DownloadFileGroupProgressChanged += new
DeploymentProgressChangedEventHandler(appdep_DownloadFileGroupProgressChanged);
appdep.UpdateCompleted += new AsyncCompletedEventHandler

(appdep_UpdateCompleted);
appdep.UpdateProgressChanged += new
DeploymentProgressChangedEventHandler(appdep_UpdateProgressChanged);

}

At the heart of the ClickOnce APIs are six events:

• CheckForUpdateCompleted

• CheckForUpdateProgressChanged

• DownloadFileGroupCompleted

• DownloadFileGroupProgressChanged

• UpdateCompleted

• UpdateCompleted

There are three primary “completed” events, and each one has an associated “progress
changed” event. For example, there is an UpdateCompleted event and an UpdateProgressChanged
event. When an update is fired, you’ll have one or more progress events and then a completed
event. The sample application registers for all of these events in order to show log messages
and to enable/disable user interface controls.

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES 199

Referring to the earlier data migration sample, rather than perform a check at the start of
the application to see whether you have to migrate data, it may make more sense to use these
events to handle data migration. For a complex application that, for example, does on-demand
downloads of updates, you will find these events very useful. For example, rather than use the
built-in self-updating feature of ClickOnce, you could set up a timer to check for application
updates. When an update is available, ClickOnce will download it and upon completion kick
off data migration. This may seem far-fetched, but for a complex data migration problem this
is actually a reasonable solution because checking for and downloading updates using the
ClickOnce APIs is extremely easy. For example:

private void CheckForUpdateHandler(object sender, EventArgs e)
{

try
{
AddLog("starting update check...");
ApplicationDeployment appdep = ApplicationDeployment.CurrentDeployment;
appdep.CheckForUpdateAsync();
}
catch (Exception ee)
{
MessageBox.Show(ee.Message, "Error", MessageBoxButtons.OK);
}

}
void appdep_CheckForUpdateCompleted(object sender,

CheckForUpdateCompletedEventArgs e)
{

if (e.UpdateAvailable)
{
// some logic goes here
}

}
private void DownloadUpdatesHandler(object sender, EventArgs e)
{

try
{
SetButtonsEnabled(downloadUpdatesBtn,false);
SetButtonsEnabled(cancelDownloadBtn, true);
ApplicationDeployment ad =
System.Deployment.Application.ApplicationDeployment.CurrentDeployment;
ad.UpdateAsync();
}
catch (Exception ee)
{
MessageBox.Show(ee.Message,"Error",MessageBoxButtons.OK);
}

}
void appdep_UpdateCompleted(object sender, AsyncCompletedEventArgs e)

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES200

{
AddLog("UpdateCompleted");
SetButtonsEnabled(downloadUpdatesBtn,false);
SetButtonsEnabled(cancelDownloadBtn, false);
SetButtonsEnabled(chkForUpdateBtn, true);

}

The previous code listing shows how easy it is to use the ClickOnce APIs to check for updates
and download one when available. For example, the CheckForUpdateHandler() method calls the
ClickOnce CheckForUpdateAsync() method. When update checking is complete, the ClickOnce
runtime notifies the application by firing the CheckForUpdateCompleted event with information
about a possible update. In this sample, the appdep_CheckForUpdateCompleted() event han-
dler is invoked by the ClickOnce runtime with update information. Similarly, when an update
is available, the UpdateAsync() method is used to download the entire update; the appdep_
UpdateCompleted() event handler is called when the downloading of the update is finished.
Note that you can do all of this using the synchronous APIs as well. For example, this example
checked for an update asynchronously using CheckForUpdateAsync(). You can do the same
synchronously by calling CheckForUpdate().

You can download the source code to this sample from http://sayedhashimi.com/
downloads/book/ClickOnceAPIsApp/ondemandsrc.zip.

Note that even though the examples in this section talked strictly about storing a file-based
database in the ClickOnce data directory, you can store any file type you like. Common uses of
the data directory include the following: storing user/application preferences and/or settings,
maintaining a persistent cache, maintaining a file-based database, providing offline support,
and so on.

Considering Security When Using the ClickOnce
Data Directory
In the discussion of the ClickOnce data directory, we avoided talking about security, and for
good reason. That’s what demos are all about—talk about the good stuff, and don’t mention
anything else. Well, it turns out that a side effect of using the ClickOnce data directory is that
you need unrestricted access to the file system. Why? Well, you don’t know the actual path to
the data directory so you can’t request FileIOPermission to that folder. Thus, you need unre-
stricted access to the file system to ensure access to the data directory.5

That’s just part of the problem; the other issue deals with using the ClickOnce APIs. As
you saw with the sample applications, using the data directory requires that you use the Click-
Once APIs because one of the benefits of the data directory is that you can migrate files from
version to version. It turns out that the ClickOnce APIs, for the most part, require full trust—if
you deploy a partial trust application that attempts to use the ClickOnce APIs, you’ll most likely
get security exceptions. We say “likely” because most of the methods (and properties), directly
or indirectly, require full trust. You can, however, get by with partial trust for isolated cases. For

5. Note that we are talking about CAS here.

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES 201

example, if you have unrestricted FileIOPermission and use the ClickOnce APIs to do only data
migration, you can squeeze by without full trust. For general uses of the ClickOnce APIs, how-
ever, you need to have full trust. Note that you actually don’t need to use the ClickOnce APIs if
you need to get access only to the ClickOnce data directory, as shown in Figure 8-4, because
the DataDirectory property on the ApplicationDeployment object is just a wrapper for AppDomain.
CurrentDomain.GetData("DataDirectory").

Also realize that if you use ADO.NET to do data migration (as in the sample application),
you’ll definitely need full trust because the ADO.NET assemblies require it.

Working with Prerequisites
In the previous chapter, we briefly talked about the using the bootstrapper, which is an exe-
cutable that has two responsibilities:

• Checking for prerequisites on the client machine and installing them if they are missing

• Launching the ClickOnce installer after verifying or installing prerequisites

Since all ClickOnce-deployed applications require the .NET Framework 2.0, the Prerequisites
dialog box has the .NET Framework checked by default.6 Visual Studio actually lists the follow-
ing prerequisites:

• Microsoft Data Access Components 2.8 (MDAC 2.8)

• The .NET Framework 2.0

• Crystal Reports for .NET Framework 2.0

• Microsoft Visual J# .NET Redistributable Package 2.0

• Microsoft Visual Studio 2005 Report Viewer

• Visual C++ Runtime Libraries (x64)

• Visual C++ Runtime Libraries (x86)

• Windows Installer 2.0

• Windows Installer 3.1

• SQL Server 2005 Express Edition

MDAC 2.8 contains data access components (for example, the OLE DB data provider).
The .NET Framework 2.0 is the .NET runtime. Crystal Reports for .NET Framework 2.0 is required
if you deploy an application that works with Crystal Reports for Visual Studio. If you deploy an
application built with Visual J# 2.0, you’ll need Microsoft Visual J# .NET Redistributable Package 2.0
on the client machine. Similarly, you’ll need one of the Visual C++ runtime libraries if your
application was built with or uses Visual C++. Microsoft Visual Studio 2005 Report Viewer
contains the libraries you need on the client machine if your application uses any of the new

6. Every ClickOnce-deployed application needs to have the .NET Framework 2.0. Other prerequisites
may also be checked, by default, depending on your application type. For example, if you build a
Visual J# application, the J# prerequisite package will also be checked.

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES202

Report Viewer controls. Prerequisites are packaged as MSI packages. If you have an MSI that
requires, for example, Windows Installer 3.1, then you can use the bootstrapper to make sure
the specific Windows Installer is on the target machine prior to running your prerequisite.
Finally, SQL Server 2005 Express Edition is the next evolution of Microsoft SQL Server Desktop
Engine (MSDE).7 SQL Server 2005 Express Edition is a “free-to-distribute” database engine. In
the previous section, we talked about using a Microsoft Access database to implement an offline
facility. An Access database can manage offline facilities for most applications, but some smart
client applications need the robustness of a full-fledged database on the client.

The previous list shows the common prerequisites. Because every application is unique,
your application may have prerequisites that are not covered by the list. If that’s the case, you
can easily create a prerequisite of your own and have the bootstrapper verify its existence on
the client machine prior to running your ClickOnce installer. We’ll talk about how you can do
that in the “Building a Custom Prerequisite” section. For now, you need to get comfortable with
deploying prerequisites: we’ll show you how to build an application that uses Visual J#, and we’ll
show how the prerequisite is installed on the client machine prior to the ClickOnce application.

The sample application that we’ll talk about is called WorkingWithPreReqs; you can obtain
it via http://www.sayedhashimi.com/downloads/book/WorkingWithPreReqsApp/publish.htm.

When you browse to the publish.htm page of the sample application, you’ll see the screen
shown in Figure 8-8.

The publish.htm page shown in Figure 8-8 shows two prerequisites required by the applica-
tion. Note the message just below the list. The message essentially says that if you have these
items on the machine, then you can install the application by clicking the Launch link (which
points to the deployment manifest). If you don’t have the prerequisites, then click the Install
button. If you click the Install button, you’ll execute the bootstrapper setup.exe file (see the
status bar). If you have run through a few ClickOnce deployments, you may have noticed
that generally you don’t see the .NET Framework prerequisite displayed in the publish.htm
page. It turns out that the publish.htm page has a bit of JavaScript in it that can detect the .NET
Framework 2.0; however, the other prerequisites are up to the user to determine. By default,
when your application lists more than the .NET Framework 2.0 as prerequisites, the publish.htm
page displays the entire list of prerequisites in the publish.htm page. If you click the Install button,
the setup.exe file is downloaded from the deployment URL, and you can run or save the file
(see Figure 8-9).

To install the prerequisites, you can click either Run or Save. If you click Save, you’ll have
to run the setup.exe file manually. Either way, you have to run the setup.exe file to install the
prerequisites.

7. Distributing MSDE does have some limitations. See http://msdn.microsoft.com/library/en-us/dnmsde/
html/msderoadmap.asp for more details.

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES 203

Figure 8-8. publish.htm showing the list of prerequisites required by the application

Figure 8-9. The bootstrapper install dialog box

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES204

PREREQUISITES REQUIRE USERS TO HAVE ADMINISTRATOR PRIVILEGES

One of the issues that we touched on in the previous chapter was that administrator-level permissions are
required to run the setup.exe file. If a user with nonadmin permissions clicks Run, they will be greeted with
an error message. Note that prerequisites have to be installed only once per machine, so in a corporate envi-
ronment, systems administrators can use admin tools, such as SMS and IntelliMirror, to automate the deployment
of prerequisites to workstations prior to users running the ClickOnce deployment.

Administrator privileges are required for several reasons, the primary one being that prerequisites
ultimately run MSI packages, and MSI requires admin permissions by default.

When you run setup.exe, the bootstrapper iterates over the required prerequisites and
checks to see whether the prerequisite is on the machine. If not, it launches the prerequisite
installer application. In the sample application, if you do not have the Visual J# 2.0 runtime,
then the first screen you’ll see is the end user license agreement (EULA) page for the Visual J# 2.0
install. If you click Accept, the prerequisite installer launches an MSI to install the Visual J#
runtime.

One of the options that you have when configuring prerequisites using the Prerequisites
dialog box in Visual Studio 2005 is to specify from where the prerequisites are going to be down-
loaded. By default, the Download Prerequisites from the Component Vendor’s Web Site radio
button is checked. You can also have Visual Studio 2005 copy the prerequisites to your publish
location (next to your ClickOnce deployment) and have them downloaded from there. You also
have the option of providing a separate location if the component vendor or your deployment
location does not work for your deployment scenario. The dialog box shown to the right in
Figure 8-10 displays an error message, effectively saying that the prerequisite could not be
downloaded. At the bottom of the dialog box, you can see that there was an error downloading
from http://go.microsoft.com/fwlink/?LinkId=37218.

Figure 8-10. The prerequisite could not be downloaded.

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES 205

The link points to the Visual J# Redistributable 2.0, which we had configured to be down-
loaded from the Microsoft site. In the case of this sample, we disconnected the Internet
connection to demonstrate a failure of a component. To get around the error message, you can
reconfigure prerequisite downloads to come from the application deployment location by choos-
ing the Download Prerequisites from the Same Location As My Application radio button. Note
that Where the Prerequisites Are Downloaded From is a global setting that applies to all prerequi-
sites; you cannot have one prerequisite downloaded from the component vendor site and have
others downloaded from your site. If you choose to have prerequisites downloaded from your
application’s deployment location, Visual Studio 2005 copies the prerequisite packages to your
deployment folder. It places each of the prerequisites into a separate folder (see Figure 8-11).

Figure 8-11 shows the dotnetfx folder for the .NET Framework 2.0 redistributable and the
vjsharprdp folder for the Visual J# redistributable. As mentioned earlier, you can also have pre-
requisites downloaded from a custom location. This option makes sense if you deploy more than
one application that relies on the same set of prerequisites. You can use this option to circum-
vent having multiple copies of the same prerequisite on more than one machine. This option
is especially useful if you are deploying custom prerequisites, which we’ll talk about shortly.

Understanding the Prerequisite Manifest Files
You saw that if you configure Visual Studio 2005 to download the prerequisites for your appli-
cation from the same place as your application, then the prerequisites are copied next to your
application. If Visual Studio copies these files to your application’s deployment folder, then the
prerequisites must exist on the machine somewhere. It turns out that the prerequisite packages
that are shown in the Prerequisites dialog box live under %ProgramFiles%\Microsoft Visual
Studio 8\SDK\v2.0\BootStrapper\Packages. If you browse to the Packages folder, you’ll see the
ten prerequisites we listed earlier. If you look inside a few of the prerequisite packages, you’ll
get an idea of what comprises a prerequisite (see Figure 8-12).

Figure 8-11. Prerequisites deployed with the application

Figure 8-12. Contents of a few prerequisites

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES206

For Visual Studio 2005 to load prerequisites, you need a way to describe the prerequisite
to Visual Studio. Moreover, for the bootstrapper to execute the prerequisite, it has to know
what file to execute (for example, vjredist.exe). It turns out that prerequisites are composed
of not only the binaries that make up the actual prerequisite but also of a few descriptor files
(for example, product.xml) that describe the prerequisite. Actually, two descriptor files are used:
the product manifest and the package manifest. The product manifest describes how to deter-
mine the existence of the prerequisite and how to install it if it doesn’t exist. The package manifest
has to do with culture. This package is specific to a locale, and the information within this
manifest paints the prerequisite user interface based on the client’s locale settings. The pack-
age manifest is named package.xml and lives within the culture-specific folder. For example,
in Figure 8-12, you can see that all of the prerequisites shown have a folder named en or EN, for
English. If you drill down into this folder, you’ll find a package.xml file in each of them.

An example of a product manifest is as follows:

<?xml version="1.0" encoding="utf-8" ?>
<Product
xmlns="http://schemas.microsoft.com/developer/2004/01/bootstrapper"
ProductCode="Microsoft.Sql.Server.Express.1.0">
<RelatedProducts>

<DependsOnProduct Code="Microsoft.Net.Framework.2.0" />
<DependsOnProduct Code="Microsoft.Windows.Installer.3.1" />

</RelatedProducts>

<PackageFiles>
<PackageFile Name="SqlExpressChk.exe"/>

</PackageFiles>

<InstallChecks>
<ExternalCheck Property="SQLExpressInstalled"

PackageFile="SqlExpressChk.exe"/>
</InstallChecks>

</Product>

The previous product.xml file belongs to the SQL Server 2005 Express Edition prerequisite.
The product descriptor shows only three nodes. The root node is the Product node. Within the
Product node, you have nodes named RelatedProducts, PackageFiles, and InstallChecks. The
RelatedProducts node defines additional products that either are included as part of the defined
prerequisite or are products upon which this prerequisite depends. In the previous example,
you can see that SQL Server Express Edition depends upon the .NET Framework 2.0 and
Windows Installer 3.1. You can also include a product with the prerequisite by using a node
named IncludesProduct. The PackageFiles node defines the files that make up the actual pre-
requisite. In Figure 8-12, you can see that the SQL Server Express Edition folder contains a file
named SQLExpressChk.exe. You also see the same file listed within the PackageFiles node. The
InstallChecks node describes how to check for the existence of the prerequisite. In the previous
case, the InstallChecks node tells the consumer of the manifest file to look for an external
property named SQLExpressInstalled. There are also several other useful install checks:
AssemblyCheck, RegistryCheck, FileCheck, and so on.

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES 207

The SQL Server Express Edition prerequisite has a nice, short product manifest. It turns
out that the Product node actually has two other nodes as well: Command and Schedules. The
Command node defines executable commands that implement the tests that are described within
the InstallChecks node. The Command node has two child nodes: InstallConditions and
ExitCodes. The InstallConditionsnode describes condition steps in the command. The ExitCodes
node defines the list of possible exit codes that an action can return. A sample Command node is
as follows:

<Command PackageFile="someexe.exe" Arguments=""
EstimatedInstallSeconds="50" >

<InstallConditions>
<FailIf Property="VersionMsi"

Compare="ValueLessThan"
Value="3.1"
String="Invalid Windows Installer Version"/>

</InstallConditions>

<ExitCodes>
<ExitCode Value="0" Result="Success"/>

</ExitCodes>
</Command>

The previous code snippet shows a Command node that has a FailIf condition. Specifically,
the FailIf condition is looking for a Windows Installer version that is older than 3.1. If this
condition is true, the command fails. Another useful install condition, called BypassIf, can be
used to bypass executing a command.

That takes care of the Command node. The Schedules node executes commands based on
a schedule. InstallConditions, for example, has a property called Schedule that refers to
a defined Schedule node within the Schedules node that defines when the command should
execute. An example using Schedules is as follows:

<Schedules>
<Schedule Name="BeforeProductInstall">

<BeforePackage/>
</Schedule>

</Schedules>

<InstallChecks>
<!-- some conditions -->

</InstallChecks>

<!-- defines how to invoke the setup for the package -->
<Commands Reboot="Defer">
<Command PackageFile="somefile.exe"

EstimatedInstallSeconds="300">
<InstallConditions>

<!-- do not install if there is no .NET Framework -->
<FailIf Property="DotNetInstalled" Schedule="BeforeProductInstall"

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES208

Compare="ValueEqualTo"
Value="0" String="DotNetFxRequired" />

</InstallConditions>

<ExitCodes>
<ExitCode Value="0" Result="Success"/>
<ExitCode Value="3010" Result="SuccessReboot"/>

</ExitCodes>

</Command>
</Commands>

The previous code snippet defines a schedule named BeforeProductInstall. The sched-
ule is then referenced by the FailIf install condition, essentially saying, “Fail if the .NET
Framework is not installed.”

The following is the package manifest for SQL Server 2005 Express Edition:

<?xml version="1.0" encoding="utf-8" ?>
<Package
xmlns="http://schemas.microsoft.com/developer/2004/01/bootstrapper"
Name="DisplayName"
Culture="Culture"
LicenseAgreement="eula.txt"

>

<PackageFiles CopyAllPackageFiles="false">
<PackageFile Name="sqlexpr32.exe"
HomeSite="SqlExprExe"
PublicKey="public-key-goes-here"

<PackageFile Name="eula.txt"/>
</PackageFiles>
<Commands Reboot="Defer">

<Command PackageFile="sqlexpr32.exe"
Arguments='-q /norebootchk /qn
reboot=ReallySuppress
addlocal=all
instancename=SQLEXPRESS
SQLAUTOSTART=1'

EstimatedInstalledBytes="225000000"
EstimatedTempBytes="225000000"
EstimatedInstallSeconds="420">

<InstallConditions>
<BypassIf Property="SQLExpressInstalled"

Compare="ValueEqualTo" Value="0"/>
<BypassIf
Property="VersionNT"
Compare="VersionGreaterThanOrEqualTo"
Value="8-1"/>

<FailIf

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES 209

Property="AdminUser"
Compare="ValueEqualTo"
Value="false"
String="AdminRequired"/>

<FailIf
Property="Version9x"
Compare="ValueExists"
String="InvalidPlatform"/>

<!-- MORE install conditions HERE-->
</InstallConditions>

<ExitCodes>
<ExitCode Value="0" Result="Success"/>
<ExitCode Value="1641" Result="SuccessReboot"/>
<ExitCode Value="3010" Result="SuccessReboot"/>
<!-- MORE EXIT CODES HERE-->

</ExitCodes>
</Command>
<Command PackageFile="sqlexpr32.exe"

Arguments='-q /norebootchk /qn reboot=ReallySuppress
addlocal=all instancename=SQLEXPRESS SQLAUTOSTART=1'
EstimatedInstalledBytes="225000000"
EstimatedInstallSeconds="420">

<InstallConditions>
<BypassIf
Property="SQLExpressInstalled"
Compare="ValueEqualTo" Value="0"/>

<BypassIf Property="VersionNT"
Compare="VersionLessThan"
Value="8-1"/>

<FailIf Property="AdminUser"
Compare="ValueEqualTo"
Value="false"
String="AdminRequired"/>

<!-- MORE CONDITIONS HERE-->
</InstallConditions>
<ExitCodes>

<ExitCode Value="0" Result="Success"/>
<ExitCode Value="1641" Result="SuccessReboot"/>
<DefaultExitCode Result="Fail"

FormatMessageFromSystem="true"
String="GeneralFailure" />

<!-- MORE EXIT CODES HERE -->
</ExitCodes>

</Command>
</Commands>

<Strings>
<String Name="DisplayName">SQL Server 2005 Express Edition</String>

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES210

<String Name="Culture">en</String>
<String Name="AdminRequired">You do not have the permissions</String>
<!-- MORE STRINGS HERE -->

</Strings>
</Package>

As you probably noticed, the package manifest looks similar to the product manifest. You
still see PackageFiles, Commands, and InstallConditions. The difference is that you now have
a root node named Package and another node named Strings. The Strings element contains
culture-specific resource strings. The PackageFiles, Commands, and InstallConditions nodes
are now specific to the particular culture. That is, you now have install conditions.

You may have noticed in the discussion of the product manifest that there was not a Commands
node in the product.xml file for SQL Server Express Edition. You may have even asked yourself,
how is this prerequisite going to be installed if there are no commands to execute? Well, the
commands that do the install of the prerequisite, in this case, are locale specific.

At this point, you should have a good idea of what the product and package manifests
are. The whole idea behind the discussion was to prepare you to create your own custom
prerequisites.

Building a Custom Prerequisite
As you have learned, the prerequisites that come with Visual Studio 2005 are stored within the
bootstrapper package folder path at %ProgramFiles%\Microsoft Visual Studio 8\SDK\v2.0\
BootStrapper\Packages. Visual Studio 2005 iterates over the folders in this path and reads the
package manifests. From each package manifest it reads the Name property of the Package node,
and then it finds that String under the Strings node. It uses that string value as the prerequi-
site name in the Prerequisites dialog box. The goal of the following sections is to show how to
create a custom prerequisite, have it appear in the list of prerequisites, and then install it when
you install the product. To do this, you’ll follow these steps:

1. You’ll build a simple Windows Installer that will install something specific on the client
machine.

2. You will write a product manifest and then a package manifest.

3. You will then put these items into a folder under C:\Program Files\Microsoft Visual
Studio 8\SDK\v2.0\BootStrapper\Packages.

4. You’ll reference the custom prerequisite in a solution and verify that it worked.

Step 1: Build a Windows Installer
All sorts of prerequisites exist, but the ones you’ve seen so far are products such as the .NET
Framework or SQL Server Express Edition. Your application, however, can have all sorts of
dependencies. For example, you might need a file to exist at a particular folder, a registry key,
a Windows service, a database, and so on. In this example, we’ll keep things simple: you’ll create
a Windows Installer that writes a registry entry. You’ll then write an application that displays
the value of the registry entry in a Windows Forms application.

The first step is to create a Windows Installer. Several products can do this, but the easiest
is to use Visual Studio 2005 to create the MSI, start Visual Studio 2005, and then open the New

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES 211

Project dialog box. From the list of project types, choose Other Project Types and then choose
Setup and Deployment. From there, create a setup project, and name it CreateRegKeySetup.
When Visual Studio 2005 creates the project, click the Registry Editor button in the Solution
Explorer (see Figure 8-13).

Clicking the Registry Editor button opens a UI, the Registry Editor, that you can use to
create registry entries. Under HKEY_LOCAL_MACHINE ➤ Software, create a new key, and name it
ACoolSample. Select ACoolSample, create a string, and give the key/value shown in Figure 8-13.
Now build the project by choosing Build ➤ Rebuild All.

With that, you now have an MSI under your build configuration folder. For example, if your
build is in Debug mode, you should have an MSI (CreateRegKeySetup.msi) under the Debug
folder. To make sure your MSI creates the required registry key, right-click the project in the
Solution Explorer, and choose Install (see Figure 8-14).

Figure 8-13. Using the Registry Editor to create a new registry entry

Figure 8-14. Running the installer

When you click Install, you should see the Windows Installer. Install the application for
everyone, and then verify that the registry key was created. You can do this by typing regedit
after selecting Start ➤ Run. After you verify that the installer created the key, delete the key.

Step 2: Write the Manifest Files
At this point, you have an MSI that you can use to create the registry key required by the sample
application. You now need to create the product and package manifest files. To do this, create
a Windows Forms application in the same solution. You have to package the prerequisite in
a folder, so create a folder within this application, and name it MyCustomPreReq. Next create a file
named product.xml and then a folder named en. Within en, create a file named package.xml.

Since we’ve talked at length about the manifest files, you should have no problem entering
the following for the product manifest (product.xml):

<?xml version="1.0" encoding="utf-8"?>
<Product

xmlns="http://schemas.microsoft.com/developer/2004/01/bootstrapper"
ProductCode="ClickOnceAndCustomPreReq">

<RelatedProducts>
<DependsOnProduct Code="Microsoft.Net.Framework.2.0"/>

</RelatedProducts>
<PackageFiles>
<PackageFile Name="CreateRegKeySetup.msi"/>

</PackageFiles>
<InstallChecks>
<RegistryCheck Property="ACoolKey"

Key="HKLM\Software\ACoolSample" Value="SaySomething" />
</InstallChecks>
<Commands Reboot="None">
<Command PackageFile="CreateRegKeySetup.msi" EstimatedInstallSeconds="30">
<!-- These checks determine whether the package is to be installed -->
<InstallConditions>
<BypassIf Property="ACoolKey" Compare="ValueExists"/>
<!-- Block install if user does not have admin privileges -->
<FailIf Property="Version9x"

Compare="ValueExists" String="InvalidPlatform"/>
<FailIf Property="VersionNT"

Compare="VersionLessThan" Value="8-0.4" String="InvalidPlatform2K"/>
<FailIf Property="AdminUser"

Compare="ValueEqualTo" Value="false" String="AdminRequired"/>
</InstallConditions>
<ExitCodes>
<ExitCode Value="0" Result="Success"/>
<DefaultExitCode Result="Fail"

FormatMessageFromSystem="true" String="GeneralFailure"/>
</ExitCodes>

</Command>
</Commands>

</Product>

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES212

At the top of the manifest you can see that the prerequisite depends on the .NET Frame-
work 2.0. You also see that you have one PackageFile, and that’s the MSI file you created in the
previous step. You have defined a single install check: RegistryCheck. You are looking for a key
at HKLM\Software\ACoolSample, which has a string value named SaySomething. The value of the
string value SaySomething is stored in the property named ACoolKey. You have defined one
Command under the Commands node. The command has several InstallConditions and ExitCodes
defined. There are three install conditions, the first of which says that if the property value of
ACoolKey exists, then bypass the installation of the prerequisite. The three FailIf conditions
guard against the installation on older versions of Windows and for a nonadmin user. Finally,
the ExitCodes node lists an exit code for successfully completing the installation and then
a default entry for a failure. Note that some commands may require a reboot. In this case, we
obviously don’t require this, so the Commands node has the attribute Reboot="None".

That takes care of the product manifest. You now need to create the package manifest:

<?xml version="1.0" encoding="utf-8" ?>
<Package xmlns="http://schemas.microsoft.com/developer/2004/01/bootstrapper"

Name="DisplayName" Culture="Culture" LicenseAgreement="eula.txt">
<PackageFiles>
<PackageFile Name="eula.txt"/>

</PackageFiles>
<Strings>
<String Name="DisplayName">My Custom Prerequisite</String>
<String Name="Culture">en</String>
<String Name="AdminRequired">Administrator required.</String>
<String Name="InvalidPlatform">Windows 2000 or later is required.</String>
<String Name="InvalidPlatform2K">

Windows 2000 Service Pack 4 or later is required.
</String>

</Strings>
</Package>

The package manifest for the sample application is also fairly simple. At the top you have
the root Package node and then a PackageFiles node and a Strings element. The PackageFiles
node has only the EULA file and the Strings node, which contains culture-specific messages.
One of the interesting features in this file is the Name attribute on Package. Visual Studio 2005
uses this node to determine what gets displayed in the prerequisite list. In this case, you refer-
ence the DisplayName String, which has the value My Custom Prerequisite, which is what you
expect to see in the Prerequisites dialog box. Note that the package manifest refers to eula.txt.
Therefore, create a eula.txt file next to the manifest files in the sample application. You’ll use
all of these files in the next step.

Before you jump to the next step, you need to write some C# code to read the value of the
registry key that gets written by the prerequisite. To do that, open MainForm in the Windows
Forms application you created earlier. Place a button on the form, and double-click the button
to access the handler in the code-behind file. Enter the following code to read the registry and
display its value:

try
{

using (RegistryKey rg = Registry.LocalMachine)

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES 213

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES214

{
string key = @"Software\ACoolSample";
RegistryKey myreg = rg.OpenSubKey(key);
if (myreg == null)
{

throw new Exception("Failed to open key [HKLM\\" + key + "]");
}
using (myreg)
{

string val = myreg.GetValue("SaySomething") as string;
MessageBox.Show("Read value for SaySomething [" + val + "]");
}

}
}
catch (Exception ee)
{

MessageBox.Show(ee.Message);
}

Step 3: Copy Files to the Packages Folder
The next step you need to take is to package the prerequisite and place it in the Packages folder
next to the other prerequisites. To do this, take the folder you created within the Windows
application named MyCustomPreReq, and copy it to %ProgramFiles%\Microsoft Visual Studio 8\
SDK\v2.0\BootStrapper\Packages. Note that you have not actually copied the MSI into this
folder yet. After you copy the folder to the Packages directory, also copy and paste the MSI
within your prerequisite folder. Your folder structure should look like Figure 8-15.

Figure 8-15. Prerequisite folder contents

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES 215

Figure 8-15 shows the contents of the prerequisite folder and shows the en folder to the
bottom right. You should have eula.txt and package.xml within en and the product manifest
and the MSI within the root of the prerequisite folder.

Step 4: Use the Custom Prerequisite
At this point, the only step left is to reference the prerequisite and then deploy the application
with ClickOnce. To do that, select the Windows Forms application, and then choose Proper-
ties. From there, open the Publish tab, and click the Prerequisites button. You should see your
custom prerequisite in the list of prerequisites (see Figure 8-16).

Figure 8-16. The custom prerequisite within Visual Studio 2005

Select My Custom Prerequisite from the list, and then publish the application. Note that
you’ll have to publish the application with full trust. When the application is published and if
you have publish.htm set to display after a publish, you should see the prerequisite in the list
(see Figure 8-17).

Figure 8-17. The custom prerequisite in the publish.htm page

You should be able to click the Install button to install the prerequisite and then execute
the application (see Figure 8-18). When the application starts, verify that the registry entry was
created.

That seems like a lot of work, but after doing it a few times, you’ll agree that it is extremely
easy to add a custom prerequisite to your ClickOnce deployment. If you followed through the
example within Visual Studio 2005, then you now know that Visual Studio has IntelliSense sup-
port for the two manifests, which makes creating these two files pretty easy.

You can install this sample application from http://sayedhashimi.com/downloads/book/
MyCustomPreReqApp/publish.htm.

You can also get the source from http://sayedhashimi.com/downloads/book/
MyCustomPreReqApp/CreateRegKeySetupsrc.zip.

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES216

CHAPTER 8 ■ THE CLICKONCE DATA DIRECTORY AND DEPLOYING PREREQUISITES 217

Figure 8-18. The bootstrapper installing the prerequisite and then running the application

Summary
In this chapter, we talked at length about using the ClickOnce data directory. You can use the
data directory as a place to persist application state, and you can migrate application state from
one version to another. We also talked about how you can use the ClickOnce APIs. We identified
the various deployment events and described a sample application that showed how you can
use these APIs.

The second half of the chapter talked about prerequisites. At the heart of a prerequisite are
two manifest files: the product manifest and the package manifest. We described these files and
then showed how to create them. We also deployed a custom prerequisite.

In the next chapter, you will look at tools related to deploying with ClickOnce. We’ll identify
some ClickOnce scenarios and then introduce various tools that can help with the deployment.
Specifically, we will cover the Manifest Generation and Editing tool, the Bootstrapper Manifest
Generator, MSBuild, and a few practical ClickOnce scenarios.

ClickOnce Tools and Scenarios

In the previous chapter, we talked about using the ClickOnce data directory and the boost-
rapper to install custom prerequisites. In this chapter, we’ll pick up where we left off with the
bootstrapper by talking about the Bootstrapper Manifest Generator (BMG). This tool, as the
name suggests, helps create the manifest files you need to create in order to deploy custom
prerequisites. In this chapter, we’ll actually talk about several tools in addition to the BMG.
Specifically, we’ll talk about the Manifest Generation and Editing (MAGE) tool and MSBuild.
Toward the end of this chapter, we’ll talk about some common ClickOnce scenarios as well.
Let’s get started with the BMG tool.

Using the Bootstrapper Manifest Generator (BMG)
In the previous chapter, you found that at the core of building a custom prerequisite are two
manifest files: the product manifest and the package manifest. When you created these two
manifests for your custom prerequisite, you had to build the XML-based manifest files manually.
We mentioned that Visual Studio actually helps out quite a bit here by providing IntelliSense
support for these files. However, even though Visual Studio has IntelliSense support, manually
creating XML files is a bit prone to errors. It would help if you had a UI for this. That’s where
the BMG comes in.

The BMG has a workspace on Gotdotnet.com where you can see all of the releases of the
tool and follow links to install the application via ClickOnce. The current version (1.1.0.1 as of
this writing) runs on the final release of the .NET Framework 2.0. The first step to getting the
tool on your local machine is to visit the workspace home for the BMG on Gotdotnet.com: http://
www.gotdotnet.com/workspaces/workspace.aspx?id=ddb4f08c-7d7c-4f44-a009-ea19fc812545.
The next step deals with the BMG tool being deployed from an untrusted publisher. As of this
writing, the BMG is not signed with a trusted publisher certificate, so to seamlessly install the
application, you have to add the deployment site of the application to the trusted sites of
Internet Explorer. Once you do this, the application will install quietly and quickly. So, before
you install the application, follow these steps:

219

C H A P T E R 9

■ ■ ■

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS220

Figure 9-1. Configuring a trusted site in Internet Explorer

1. Launch Internet Explorer.

2. Go to Tool ➤ Internet Options.

3. Click the Security tab, and then choose the Trusted Sites icon from the content zone list.

4. With Trusted Sites selected, click the Sites button (see Figure 9-1).

5. Next, enter http://www.davidguyer.us in the top edit box, and then click the Add button.
This will add the URL to the Web Sites list shown in Figure 9-1.

6. Uncheck the Require Server Verification (https:) for All Sites in This Zone checkbox.

7. Click OK in the Trusted Sites dialog box and the Internet Options dialog box.

Now you should be able to install the application without problems.
Figure 9-2 shows the application’s main window, along with the New Project dialog box. As

shown, the application supports two project types: Package Manifest and MSBuild. The Package
Manifest option is the facility you are most concerned with because it hides all of the XML in
the product and package XML files you saw in the previous chapter. The MSBuild option creates
an MSBuild project for a prerequisite package (and will not be discussed in this book).

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS 221

Figure 9-2. The BMG UI

In the previous chapter, you created a prerequisite package that checked for a registry entry.
Recall that you first created an MSI to write the registry entry and then wrote a prerequisite
package that checked for the existence of the registry entry. If the package didn’t find the entry,
it launched the MSI to install the prerequisite. In this section, you’ll create the same prerequisite
but use the BMG to do it. To walk along with this exercise, you can download the MSI from
the previous example at http://sayedhashimi.com/downloads/book/MyCustomPreReqApp/
mycustomprereq/CreateRegKeySetup.msi.

After you download the MSI, open the BMG, choose File ➤ New, select Package Manifest,
and then click OK. This will create a new package manifest project. Next, select the Package
node from the tree control. This should display the Package to Install screen. The information
typed into this dialog box appears for all localized versions of the package. Enter a project name
(such as “Using the BMG”), as shown in Figure 9-3.

After you enter a project name, the application automatically generates a product code
using the project name. Leave the default product code, right-click the Package node from the
tree control, and choose Add Install File. You should see the AddFile dialog box, as shown in
Figure 9-4.

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS222

The AddFile dialog box is for adding the MSI or setup.exe file that will install the prerequisite
package. In the example from the previous chapter, you created an MSI that wrote a registry entry.
You can download this MSI from http://sayedhashimi.com/downloads/book/MyCustomPreReqApp/

Figure 9-3. New package manifest project UI

Figure 9-4. The AddFile dialog box

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS 223

mycustomprereq/CreateRegKeySetup.msi if you haven’t done so already. In the AddFile dialog
box, click the Browse button, and find the MSI. Note that the AddFile dialog box allows you to
select a particular language or choose All Languages, if your prerequisite is language neutral.
This example supports only the English language, so select Single Language, and make sure
English is selected in the drop-down list. Click the OK button. After you add an install file, the
application shows an entry for that file under the Package node in the tree control. Note that
since the prerequisite supports only the English language, the BMG tool displays (en) next to
the file to indicate that the install file is configured for English.

Select the install file from the tree control. The application will present the Install File
screen shown in Figure 9-5.

You can use the Install File screen to configure all aspects of the prerequisite for the given
culture. Note that the Install File screen has six tabs: Properties, System Checks, Install Conditions,
Exit Codes, Additional Files, and Security. Select the Properties tab (shown in Figure 9-5). The
HomeSite URL field represents the location where the package is going to be downloaded from,
if it’s not included with the installer. The License Agreement File field is a path to the EULA
document, the Arguments field is used to pass arguments to the installer, the Reboot field can
be used to configure reboot options after the installer completes, the Installation Time field tells
the bootstrapper how long the installation might take, the Installed Size field is the total bytes
required by the installation, and the Installation Size field is the total size in bytes required by

Figure 9-5. Install File screen

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS224

the installer during installation (for example, if the installer has to create temporary files). In
this case, the installer did not require a reboot, and the entire package is only about 85KB.
Therefore, it might take about three seconds, and its install size and installation requirements
are about 100KB.

Next, ensure that the install file you added in the previous section is selected in the tree
control, and then click the System Checks tab. The System Checks tab provides UIs for the
various checks discussed in the previous chapter (see Figure 9-6).

You can select the type of check by clicking a toolbar button on the System Checks tab.
Each button displays the corresponding screen for the selected check. The application supports
the following checks: File Check, Registry Check, Registry File Check, MSI Product Check, External
Check, and GAC Check. In this example, you’ll check for the existence of a registry key. Specifically,
you are interested in the string value of the following: HKEY_LOCAL_MACHINE\SOFTWARE\ACoolSample\
SaySomething. To create this check, click the Registry Check button on the toolbar. In the Registry
Check screen, give the Property for Result field the name ACoolKey. Recall that when you did
this manually, you created a registry check in the product.xml file that looked like this:

<RegistryCheck Property="ACoolKey"
Key="HKLM\Software\ACoolSample" Value="SaySomething" />

Figure 9-6. System Checks tab

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS 225

ACoolKey creates a property that refers to the registry key HMLM\Software\ACoolSample, which
has a string value of SaySomething. To create the same check via the UI, name the property
ACoolKey, and use HMLM\Software\ACoolSample for the registry key. To pull the value from the
string value SaySomething, use SaySomething for the registry value. Note that when the check is
performed by the bootstrapper at install time, the value of the check is put into the property
ACoolKey.

Next you need to configure the install conditions for the prerequisite package. Recall that
when you did this in the previous chapter, you set up the following install conditions:

<InstallConditions>
<BypassIf Property="ACoolKey" Compare="ValueExists"/>
<!-- Block install if user does not have admin privileges -->
<FailIf Property="Version9x" Compare="ValueExists"

String="InvalidPlatform"/>
<FailIf Property="VersionNT"
Compare="VersionLessThan" Value="5.0.4" String="InvalidPlatform2K"/>
<FailIf Property="AdminUser"
Compare="ValueEqualTo" Value="false" String="AdminRequired"/>
</InstallConditions>

You have four install conditions. You want to bypass installation of the prerequisite package
if the registry entry exists and want to fail if you don’t have an administrator running the installer
or a nonsupported version of the operating system. To configure the same thing using the BMG,
select Install Conditions; you should see a screen that looks similar to Figure 9-7.

Figure 9-7. Configuring install conditions with the BMG

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS226

The BMG shines here because it makes configuring installation conditions easy. You select
the type of condition, choose from a selected list of properties, select from a list of compare val-
ues (such as less than or equal to), provide an optional value (in cases where it makes sense),
and then provide a message. Note that the first condition you check is to see whether the reg-
istry entry exists. Not surprisingly, when you named the property ACoolKey on the System
Checks tab, the property shows up in the drop-down list in the Installation Conditions tab.

Next, you need to configure exit codes for the prerequisite package. Make sure the install
file is selected in the tree control, and then choose the Exit Codes tab. Recall that in the previous
chapter, you configured the following exit codes:

<ExitCodes>
<ExitCode Value="0" Result="Success"/>
<DefaultExitCode Result="Fail"

FormatMessageFromSystem="true" String="GeneralFailure"/>
</ExitCodes>

You configured only a success exit code and a failure exit code. You can do the same using
the BMG’s Exit Codes tab. As shown in Figure 9-8, you can configure the exit code 0 to indicate
a success and then use a default system exit code for failure.

The BMG tool also allows you to add files that may be required by your prerequisite package
(such as a CAB file) using the Additional Files tab. You can configure the bootstrapper to run
security validations on the install file prior to running the installer. You do this via the Security
tab. Figure 9-9 shows both the Additional Files and Security tabs.

Figure 9-8. Configuring exit codes with the BMG

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS 227

Since the prerequisite package is not signed, you are not going to require the bootstrapper
to perform any validation prior to running the installer. You also don’t have any additional files
that you need during install, so you are done with configuring the prerequisite package. The last
step is to build the package. To do that, click the Build toolbar button above the tree control.
This will build the package and copy it to the prerequisite packages folder so that Visual Studio
2005 can display it in the Prerequisites dialog box. (Go to the Project Designer, and then choose
the Publish tab. Then click the Prerequisites button.)

The Build Results dialog box displays the contents of a build log file for the BMG (see
Figure 9-10). Note that if a build is successful, you’ll see the message “Build Succeeded” in the
status bar of the Build Results dialog box. Note that there is a link at the top of the dialog labeled
Build Output. Clicking this link opens the build output folder, and you can verify that product.xml,
package.xml, and the rest of the prerequisite files were created by the BMG tool. You can also
verify this by going to the Prerequisites dialog box in Visual Studio 2005.

Figure 9-9. Configuring additional files and security with the BMG

Figure 9-10. The Build Results dialog box

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS228

Using the Manifest Generation and Editing
(MAGE) Tool
The mage.exe tool is a command-line utility that ships with the .NET Framework 2.0 SDK. You
can use this tool to generate and modify ClickOnce deployment and application mani-
fests. Moreover, you can use the tool to sign the aforementioned files. Because mage.exe is
a command-line utility, the tool can be useful when scripting deployments or when you need
a programmatic interface for creating, editing, or signing deployment and/or application
manifests. We already mentioned that this tool also has a UI counterpart (mageui.exe) that
provides the same facilities via a Windows Forms application (see Figure 9-11).

You can launch the UI by double-clicking mageui.exe or by executing mage.exe without
any parameters. Both of these applications are stored at %programfiles%\Microsoft Visual
Studio 8\SDK\v2.0\Bin.

The first question that comes to mind with regard to the MAGE tool is, why do you need
a tool to generate ClickOnce manifest files when Visual Studio 2005 can create the files and
publish your application? Even though Visual Studio 2005 can create these files and publish
ClickOnce applications, sometimes you’ll have to manually create and modify them. Prior to
diving into using the MAGE tools, it will help if we discuss a few scenarios where this tool is
useful.

Figure 9-11. mageui.exe

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS 229

MAGE Scenario: ClickOnce Application Has to Be Deployed to
More Than One Server
Applications often have to be deployed to more than one server. In this scenario, an applica-
tion is developed and then has to move through one or more environments prior to arriving at
the production server, as depicted in Figure 9-12.

An application starts out in the development environment. In this environment, developers
use Visual Studio 2005 to publish the application while building the application. After develop-
ment is complete, however, the deployment team takes over and is responsible for moving
the application through several other environments (to ensure quality) prior to publishing the
application to the production environment. Generally, the application goes through at
least a testing environment prior to going to production; however, larger organizations have
a performance-testing environment, among others. When the deployment team gets the appli-
cation, the team is responsible for creating the ClickOnce manifest files for each environment.
To build these manifest files, deployment engineers can use the MAGE tools. As an appli-
cation moves from the test environment to the production environment, the ClickOnce
manifest files have to be modified and re-signed. You can use the MAGE tool to do this.

MAGE Scenario: The Producer of the Application Doesn’t Know
Where the Application Will Be Hosted for Deployment
Software companies don’t always know where an application is going to be hosted. For example,
a software company builds a ClickOnce application that provides problem-tracking function-
ality. One of the companies that purchased the software wants to deploy the software to their
internal users who do not have an Internet connection; however, they have a connection to
the internal network (see Figure 9-13).

Figure 9-12. Deploying a ClickOnce application to more than one environment

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS230

In this scenario, the software vendor can create the deployment and application manifest
files, but they will have to be modified once the deployment server and update server are known.
Note that you are assuming that it is not practical for the software vendor to preconfigure the
manifest files for the purchaser of the software because servers often move or have to be renamed,
so the software purchaser will need to take responsibility for maintaining the manifest files.

In this scenario, the software vendor can produce and distribute a ClickOnce deployable
application. The software purchaser can take the ClickOnce deployment, modify the manifest
files, and re-sign them using the MAGE tool.

MAGE Scenario: ClickOnce Application Has to Delay-Sign
Assemblies
The assemblies shipped with the .NET Framework are strong-named, signed assemblies. The
CLR verifies the integrity of signed assemblies prior to loading. If an assembly is tampered
with, the CLR doesn’t load it. Because of this, some organizations heavily guard the private key
used to sign assemblies. If they didn’t and someone with bad intentions obtained the private
key, they could sign the assembly and perform malicious activities. For example, if someone
got a hold of the private key used to sign the .NET Framework system assemblies (for example,
System.dll), they could copy their own version of an assembly and do virtually whatever they
liked.

Because organizations heavily guard their private keys, developers don’t have access to
the private key. This poses the question, if the private key is not exposed to developers to sign
assemblies with, how do they build strong-named assemblies? Well, the .NET Framework sup-
ports the concept of delay-signing assemblies. Delay-signing assemblies allows developers to
tell the CLR not to verify the integrity of an assembly. You can do this by following these steps:

Figure 9-13. The software vendor ships the application to the purchaser, and the purchaser
deploys the application to its internal server.

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS 231

1. Use the public key to sign the assembly. The public key is usually in the form of an
*.snk file. You can create this file using the signing tool, sn.exe, that ships with the
.NET Framework SDK. The signing tool comes with the .NET Framework SDK and is
located at %programfiles%\Microsoft Visual Studio .NET 2003\SDK\v1.1\Bin.

2. Apply the strong-named key file to the assembly by adding AssemblyKeyFileAttribute
to AssemblyInfo.cs:

[assembly:AssemblyKeyFileAttribute("myapp.snk")]

3. Set the delay-signing attribute to true:

[assembly:AssemblyDelaySignAttribute(true)]

4. Register the assembly for verification skipping using the signing tool:

sn.exe -Vr myapp.dll

Delay-signing assemblies should happen only during development. The idea is to skip
verification during development and then properly sign the assemblies prior to deployment.
The problem with delay-signing assemblies and Visual Studio publishing is that after you do
a build of your application, you have to take the generated assemblies and have them signed
using the private key. If the assemblies are modified, the ClickOnce manifests (at least the
application manifest) have to be re-signed, so you can’t publish an application that is delay-
signed using Visual Studio 2005. Instead, you’ll have to use the MAGE tool or a similar tool.

MAGE Scenario: ClickOnce Application Assemblies Need to
Be Obfuscated
Historically it has been difficult to reverse-engineer the binaries of an application to a form that
can be easily understood. With languages such as Java, C#, and others, reverse-engineering has
become easy. These languages are compiled to an intermediate form (Java goes to bytecode and
C#, and all supported .NET languages go to MSIL), which makes them easy to decompile. More
and more, organizations are looking for approaches to prevent the decompilation of their soft-
ware. Preventing someone from reverse-engineering binaries (whether bytecode, MSIL, or even
native machine code1) is nearly impossible. Because of this, organizations interested in protect-
ing themselves against decompilation use obfuscation. Obfuscation takes the intermediate form
and changes it, such that when decompiled, it becomes difficult to understand.

So, what does this have to do with ClickOnce and the MAGE tool? Well, if you have to
obfuscate your software, you’ll have to either create the ClickOnce manifest manually or edit
the Visual Studio–generated manifest files. The reason for this is that obfuscation is applied to
the assemblies. After you compile your application, you obfuscate and then publish. Visual
Studio 2005 doesn’t support plugging in obfuscation to this process. As a result, after you
obfuscate your assemblies, you have to re-sign manifest files created by Visual Studio. The
MAGE tool can help with this.

1. Cifuentes, Cristina, and K. John Gough. “Decompilation of Binary Programs.” Software: Practice and
Experience (July 1995): 811–829.

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS232

Creating the ClickOnce Manifest Files with the
MAGE Tool
By now you should understand the usefulness of the MAGE utility. In this section, you’ll learn
more about the MAGE tool by walking through the steps required to create the application
and deployment manifests with the MAGE tool. You’ll use the GUI version of the MAGE tool
(mageui.exe) rather than the command-line version.

To start, open Visual Studio 2005, and create a new Windows Forms application named
ClickOnceWithMage. When you create a Windows Forms application, Visual Studio 2005 creates
a form for you named Form1. Open Form1.cs, and rename this form to MainForm. Do this by
right-clicking the name of the class and then choosing Refactor ➤ Rename. Visual Studio will
open the Rename dialog box. Name the form MainForm, make sure the Preview Reference
Changes checkbox is checked, and then click OK.

When you click OK, Visual Studio’s Preview Changes – Rename dialog box opens (see
Figure 9-14). Review the changes, and then click Apply.

Next, open MainForm in design view, drag a button from the Toolbox, and drop it on the
form. Finally, build the application in Release mode.

To create a ClickOnce deployment using the MAGE tool, you have to collect the applica-
tion files and then create the deployment and application manifests. Open the folder where
you stored the application, and then open the bin\Release folder. Notice that Visual Studio
2005 has created an executable named ClickOnceAndMage.exe along with two other files,

Figure 9-14. Using Visual Studio 2005’s refactor facilities to rename a class

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS 233

ClickOnceAndMage.pdb and ClickOnceAndMage.vshost.exe. The first file is obviously the applica-
tion executable, but what are the other two? These two files are new to Visual Studio and are
used for debugging purposes. The *.vshost.exe file, in particular, is interesting. Read more
about this file at http://msdn2.microsoft.com/en-us/library/ms185331.aspx.

To deploy this application, first create a new folder named MageDeployments. In this file,
copy ClickOnceAndMage.exe. Next, go to Start ➤ All Programs ➤ Microsoft .NET Framework
SDK 2.0 ➤ SDK Command Prompt. Now type mageui.exe, and press Enter. You should see the
MAGE GUI shown in Figure 9-15.

Figure 9-15. The Mage window

The Mage window has a toolbar that allows you to create a new application manifest,
create a new deployment manifest, open existing manifest files, and save modified manifests.
You’ll start by creating the application manifest.

Creating the Application Manifest
You have to create the application manifest first because the deployment manifest has a refer-
ence to the application manifest. The leftmost button on the toolbar creates a new application
manifest. Figure 9-16 shows the new application manifest UI panes.

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS234

Three configuration panes are used to create/edit the application manifest file. These UI
panes are Name, Files, and Permissions Required. The Name pane captures high-level details
about the application. The interesting panes are the next two. The Files pane identifies the
files that make up the application. Because an application can consist of any number of files
and file types, the Files pane is designed so that you specify the application directory and click
the Populate button to specify the files that make up the application. When you click Populate,
the application creates an entry for each file in the Application Files grid. You can use this grid
to create optional files and file groups, just like you can when using Visual Studio 2005. The
Permissions Required pane allows you to set the CAS security requirements for the application.
The drop-down list shown in Figure 9-16 allows you to choose FullTrust, LocalIntranet, Internet,
or Custom. FullTrust, LocalIntranet, and Internet are preconfigured with specific permission
set/permissions. If you want to specify your own permission set/permissions, you can choose
Custom, and then the pane will allow you to enter your own permission requirements.

After you fill in these details, you can save the application manifest. When you click the
Save toolbar button or choose the File ➤ Save or File ➤ Save All menu item, the application
displays the Signing Options dialog box (see Figure 9-17).

Figure 9-16. The UIs used to create/edit application manifest files

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS 235

The Signing Options dialog box allows you to sign with an existing certificate or create
a new one.

Figure 9-17 also shows the Preferences dialog box that you open by selecting File ➤ Preferences.
This dialog box configures two global signing options. You can tell the application to sign the
manifest file(s) upon saving and also define a default certificate file to use for signing files.

This completes the discussion concerning the creation of the application manifest file.
We’ll now talk about the deployment manifest.

Creating the Deployment Manifest
To create a deployment manifest, click the New Deployment Manifest toolbar button.
Figure 9-18 shows the new deployment manifest UI panes.

Figure 9-17. Signing the manifest files

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS236

The Name and Description panes are self-explanatory. The Deployment Options pane has
several interesting features. The first is that you can configure the application type or deployment
mode of the application. Recall that you can deploy a ClickOnce application as an offline or
online application. An offline application is set to an application type of Install Locally, and
online applications are set to Online Only. The second interesting feature on this pane is that
you use the Start Location text box to specify where the application is going to be launched
from (that is, the ultimate location of the deployment manifest). The Start Location setting is
equivalent to the Publish Location setting in the Publish tab of the Project Designer in Visual
Studio 2005. The Update Options pane defines how the application will be updated, if at all.
Note that this pane captures the same information that the Updates dialog box captures in
Visual Studio 2005. The Application Reference dialog box associates the deployment manifest
to the application manifest. The Select Manifest button allows you to browse to and select
a .manifest file. After you fill out all the panes associated with the deployment manifest and
select an application manifest, you can save the deployment manifest.

This concludes the discussion of the MAGE application. We’ll now discuss how you can
use MSBuild and ClickOnce to make your deployments easier.

Figure 9-18. UIs used to create/edit the deployment manifest

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS 237

Using MSBuild with ClickOnce
In the previous section, we talked about the MAGE tool. We discussed the GUI version of the
tool; however, we mentioned that the tool also has a command-line interface. The command-
line interface is useful for situations where you need to script the creation of the ClickOnce
manifest files. So when would you need to script the creation of manifest files? Scripting might
be helpful in several situations; the primary reason is to automate the entire build and deploy-
ment of an application. For example, it’s not uncommon for deployment engineers to script the
entire build and publish process. Specifically, the steps might be something like the following:

1. Get the latest version of an application from the source control system.

2. Build the application.

3. Create the ClickOnce manifests.

4. Publish the application.

With the MAGE tool, you can do step 3, but the other steps have to be scripted using some
other technique. That’s where MSBuild comes in—you can use MSBuild to create a fully cus-
tomized ClickOnce deployment. To see how, you’ll build a simple Windows Forms application
and create the ClickOnce deployment using MSBuild.

Creating the ClickOnce Deployment Using MSBuild
Thus far, you have published ClickOnce applications using Visual Studio 2005 and the MAGE
tool. Now you’ll see how to do the same using MSBuild. You know from the earlier chapters
that you can write an MSBuild script from scratch and execute it. To keep things simple, this
example will use the project file generated by Visual Studio 2005. To use MSBuild to create the
ClickOnce deployment, you’ll need to perform three steps:

1. Create a Windows Forms application.

2. Set properties on the Publish, Security, and Signing tabs under the Project Designer.

3. Execute the publish target using MSBuild.

The first step is obvious, but what about the second step? That too is a requirement
because you have to modify the project file with elements such as the following:

• The publish URL

• Application update configuration

• Security requirements

• Signing details

• Application prerequisites

You can guess some of these (via default values) but not others. For example, how will
MSBuild know where you want to publish the application? Thus, after you create an application,
you need to modify the ClickOnce-related tabs with enough information so that the publish
target can execute without errors. To do that, you need to provide at least the following:

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS238

1. Provide the publish URL in the Publish tab.

2. Set the application CAS security requirement in the Security tab.

3. Check the Sign the ClickOnce Manifest checkbox on the Signing tab.

After you create aWindows application and set the ClickOnce properties, you can use MSBuild
to create the ClickOnce deployment. That’s the easy part—it takes only one command:

msbuild yoursolutionfile.sln /target:publish

This command tells MSBuild to execute the publish target on the given solution. The out-
put of the command is a ClickOnce deployment in the working build configuration (such as
Debug). If your build configuration is set to Debug, then you’ll have a yourprojectname.publish
folder within the bin\debug\ folder. The contents of the folder will look familiar (see Figure 9-19).

Figure 9-19 shows you how simple it is to create a ClickOnce deployment using MSBuild.
Note that in this example, you used Visual Studio 2005 to add the ClickOnce properties to the
project file. Having Visual Studio 2005 is obviously not a requirement—you can modify the
project file using any text editor. All you need to know is where and how the ClickOnce proper-
ties are stored in the project file. To build a ClickOnce deployment using MSBuild, all you need
to do is the following:

1. Create a signing certificate (optionally using the signing tool, sn.exe, that ships with
the .NET Framework SDK)—this is the certificate that will be used to sign the Click-
Once manifest files.

2. Add the ClickOnce properties to the project file. Do this by adding properties to the
first property group defined in the project file. For example, the following code lists
some of the ClickOnce properties stored in a typical project file:

<PropertyGroup>
<PublishUrl>c:\deployments\</PublishUrl>

Figure 9-19. An MSBuild-generated ClickOnce deployment

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS 239

<Install>true</Install>
<InstallFrom>Unc</InstallFrom>
<UpdateEnabled>true</UpdateEnabled>
<UpdateMode>Foreground</UpdateMode>
<UpdateInterval>7</UpdateInterval>
<UpdateIntervalUnits>Days</UpdateIntervalUnits>
<UpdatePeriodically>false</UpdatePeriodically>
<UpdateRequired>false</UpdateRequired>
<MapFileExtensions>true</MapFileExtensions>
<InstallUrl>\\products\deployments\</InstallUrl>
<BootstrapperEnabled>true</BootstrapperEnabled>
<SignManifests>true</SignManifests>
<GenerateManifests>true</GenerateManifests>
<ManifestKeyFile>WindowsApplication10_TemporaryKey.pfx</ManifestKeyFile>

</PropertyGroup>
<ManifestKeyFile>WindowsApplication10_TemporaryKey.pfx</ManifestKeyFile>

3. Execute the publish target on the project file.

The previous steps show how easy it is to use MSBuild to create a ClickOnce deployment.
The valuable lesson to take away from this discussion is that there is a predefined target named
publish. Moreover, you can customize and automate the ClickOnce deployments using all of
the facilities of MSBuild.

You’ll now explore how to use MSBuild to automate the generation of a ClickOnce
deployment.

Using MSBuild and ClickOnce As Part of a Build Process
Thus far, you’ve seen that you can use Visual Studio, the MAGE tool, and MSBuild to create
a ClickOnce deployment. With Visual Studio and the MAGE tool, you utilize a user interface
where you supply parameters and then click a button to have the implementation generate
the ClickOnce manifests. With MSBuild, you saw that you can execute the publish target to
generate a ClickOnce deployment. All of these methods serve their purpose; however, one area
that is not addressed by the previous methods is generating a ClickOnce deployment as part of
a build and deployment process. Figure 9-20 depicts a typical build and deployment process.

Figure 9-20 shows that a typical build and deployment process has three phases: build,
assemble, and deploy. In the build phase, a script (for example, an MSBuild-based script) is
executed to create binaries from the source code. In the assemble phase, the generated assemblies

Figure 9-20. A typical build and deployment process

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS240

are assembled into one or more applications (for example, a smart client or a web applica-
tion). In the deploy phase, the assembled applications are deployed to one or more servers.

Each of the three phases has specific input from the previous phase and generates output,
which is used in the next phase. Figure 9-21 shows the input and output of the three phases.

A build and deployment process generally consists of build, assemble, and deploy phases.
The build phase takes the source artifacts and generates assemblies. Typically, you either use the
Visual Studio solution file or enumerate the project files. The assemble phase uses the output
assemblies from the build phase. The assemble phase is responsible for assembling a deploy-
able application from the generated assemblies. After the assemble phase creates deployable
applications, the deploy phase does the actual deployment to servers.

The build and deployment process is generally an automated process. To realize the ben-
efits of an automated build and deployment process, you have to write an MSBuild script that
automatically generates a ClickOnce deployment. For example, if your solution has a smart

Figure 9-21. The input and output of the three phases of a build process

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS 241

client along with a Web application in the assemble phase, you need to automate the process
of generating the ClickOnce deployment from a list of assemblies. MSBuild defines three
tasks you can use to generate a ClickOnce deployment. The ClickOnce-related tasks include
GenerateApplicationManifest, GenerateDeploymentManifest, and GenerateBootstrapper.
The GenerateApplicationManifest task and the GenerateDeploymentManifest task generate the
ClickOnce application and deployment manifests, respectively. The GenerateBootstrapper task
generates a bootstrapper. We’ll now show how you can automate the generation of a ClickOnce
deployment using these tasks.

In this exercise, you’ll use MSBuild to create a ClickOnce deployment. The goal of this
exercise is to write an application that has one DLL and one EXE and then write an MSBuild
script to create a ClickOnce deployment. You can download the application for this exercise
from http://sayedhashimi.com/downloads/book/AutomatedDeployment.zip.

The application is a Visual Studio 2005 Windows Forms application consisting of three
files: an EXE file (.exe), a support assembly (SupportAssembly.dll), and a configuration file.
Figure 9-22 shows the UI for the application.

The application has one form, which has a button on it. When the user clicks the button,
the application calls a method in a class stored in the supporting assembly to get a string. The
string is then displayed in a label on the form.

To create an MSBuild script, you need to build the application and then take the EXE, the
config file, and the DLL and place them in a directory. This step simulates the build phase of
an automated build process. In this phase, build the application, and take the two assemblies
and the config file and put them in a folder. The MSBuild script will take the files from this
folder and will create a ClickOnce deployment from it. This is the assemble phase of an auto-
mated build and deployment process. To follow along, create the following folder structure:
c:\hold\release. Now put the three files in the release folder.

Now that you have the application files where you want them, you can start to build the
input for the MSBuild script. As we said earlier, all of the ClickOnce deployments you’ve done
so far have been done using Visual Studio 2005, the MAGE tool, or the publish target with
MSBuild. Using these techniques, you used UIs to configure the ClickOnce deployment.
Automating this process requires that you input all the ClickOnce parameters into the script.

Figure 9-22. The user interface of the Windows Forms application

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS242

What kind of input do you need? For example, you need to know the update policy of the
application. You need to know the location of the certificate used to sign the ClickOnce manifests,
the version of the application, and so on. The following list outlines the order:

1. The update URL (has to be HTTP or UNC)

2. The deployment mode of the application (online/offline)

3. The path to a certificate file

4. The application’s update policy

5. The name of the application name and its version

6. A flag to indicate whether to use the .deploy file extension

7. The path to the assembly folder

8. The path to the output folder

The update URL defines where clients will be sent for updates. The online/offline property
tells ClickOnce whether the application will be installed as an online application or an offline
application. ClickOnce manifest files have to be signed, so you need to know how to get to the
certificate file. The application name and version are self-explanatory. ClickOnce deployments
have three registered file extensions (.deploy, .application, or .manifest). The .application
and .manifest extensions are for the deployment and application manifest, respectively. The
.deploy extension is for all the files that make up the application. This flag tells the build script
whether to apply this file extension to all the files. Note that ClickOnce uses this file extension
to circumvent potential problems that often arise because of Web servers configured not to
serve specific file extensions (such as .exe).2 The assembly folder tells the script where to find
the files that need to be part of the ClickOnce deployment. The output directory property tells
the script where to put the ClickOnce deployment after it generates it.

Now let’s start the MSBuild script. You’ll start by defining the properties you need for your
ClickOnce deployment:

<PropertyGroup>
<UpdateUrl>

http://localhost/AutomaticDeployTakeOne/AutomaticDeployTakeOne.application
</UpdateUrl>

<CertificateThumbprint>
<!-- PUT CERT THUMBPRINT HERE-->

</CertificateThumbprint>
<ApplicationVersion>1.0.0.0</ApplicationVersion>
<UseDeployExt>true</UseDeployExt>
<ApplicationPublisher>Sayed Y. Hashimi</ApplicationPublisher>
<ApplicationSupportUrl>http://localhost/</ApplicationSupportUrl>
<EntryPointAssembly>AutomaticDeployTakeOne.exe</EntryPointAssembly>
<BinFolder>C:\hold\release\</BinFolder>
<RootOutputFolder>c:\inetpub\wwwroot\AutomaticDeployTakeOne\</RootOutputFolder>

2. For more about the .deploy file extension, see http://msdn2.microsoft.com/en-us/library/ms165433.aspx.

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS 243

<ApplicationName>AutomaticDeployTakeOne</ApplicationName>
<ConfigFile>AutomaticDeployTakeOne.exe.config</ConfigFile>
<LooseFiles></LooseFiles>
<ApplicationDescription>

Automating ClickOnce Deployment Generation
</ApplicationDescription>

</PropertyGroup>

We hinted at most of the properties earlier; however, a few require special attention. The
CertificateThumbprint property contains the thumbprint of the certificate that will be used to
sign the ClickOnce manifest files. You can obtain the thumbprint of a certificate by looking at
the certificate in certmgr.exe. The certmgr.exe application displays the installed certificates
(for the logged-in user). If you have the .NET Framework SDK installed, open a Visual Studio
command prompt, and enter certmgr.exe.

To obtain the thumbprint of a certificate, select a certificate, click the View button, and
then select the Details tab, as shown in Figure 9-23. From the Details tab, scroll down until the
Thumbprint field is visible. Choose Thumbprint, select the contents from the text box, and press
Ctrl+C to copy the thumbprint. You can then paste the thumbprint in your build script.

Now that you have defined your properties, you need to define a few MSBuild items that
will capture the files that make up the application. These items, along with the properties, will
be used as input to the ClickOnce-related MSBuild tasks:

<EntryPoint Include="$(BinFolder)$(EntryPointAssembly)">
<AssemblyType>Managed</AssemblyType>
<DependencyType>Install</DependencyType>

</EntryPoint>

Figure 9-23. The certmgr.exe user interface

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS244

<Dependency Include="$(BinFolder)*.dll">
<AssemblyType>Managed</AssemblyType>
<DependencyType>Install</DependencyType>

</Dependency>

<ConfigFile Include="$(BinFolder)$(ConfigFile)" />

</ItemGroup>

The previous snippet shows three items: EntryPoint, Dependency, and ConfigFile. The
EntryPoint item defines the EntryPoint assembly (that is, the EXE that contains the Main method).
The Dependency item refers to the support assembly (SupportAssembly.dll), and the ConfigFile
item points to the application configuration file.

Now let’s see the task that generates the application manifest:

<GenerateApplicationManifest
AssemblyName="$(EntryPointAssembly)"
AssemblyVersion="$(ApplicationVersion)"
ConfigFile="@(ConfigFile)"
Dependencies="@(Dependency)"
Description="$(ApplicationDescription)"
EntryPoint="@(EntryPoint)"
OutputManifest="$(RootOutputFolder)$(ApplicationName).exe.manifest">
<Output ItemName="ApplicationManifest"

TaskParameter="OutputManifest"/>
</GenerateApplicationManifest>

The GenerateApplicationManifest task outputs a ClickOnce application manifest. The
OutputManifest property of the task defines the location where the manifest is generated. In
this example, you have followed the naming convention used by Visual Studio 2005. Namely,
you have used the <application name>.exe.manifest naming convention. The EntryPoint
property points to the application executable, and the Dependencies property points to the collec-
tion of dependent assemblies. The ConfigFile property defines the application configuration
file. The rest of the properties are self-explanatory.

Now let’s see how you can generate the deployment manifest:

<GenerateDeploymentManifest EntryPoint="@(ApplicationManifest)"
OutputManifest="$(RootOutputFolder)$(ApplicationName).application"
AssemblyVersion="$(ApplicationVersion)"
Install="true"
DeploymentUrl="$(UpdateUrl)"
UpdateEnabled="true"
Product="AutomaticDeployTakeOne"
Publisher="$(ApplicationPublisher)"
SupportUrl="$(ApplicationSupportUrl)"
MapFileExtensions="$(UseDeployExt)">
<Output

ItemName="DeployManifest"
TaskParameter="OutputManifest" />

</GenerateDeploymentManifest>

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS 245

The GenerateDeploymentManifest task generates a ClickOnce deployment manifest.
As expected, the deployment manifest defines properties that capture the update policy of
the application and the location where updates are obtained. The MapFileExtensions prop-
erty is a flag that tells the tasks whether to use the .deploy file extension. Similar to
GenerateApplicationManifest, this task defines an OutputManifest property that tells the task
where to generate the deployment manifest and what to name the file. Note that the deployment
manifest has to have a reference to the application manifest. You specify the application manifest
using the EntryPoint attribute on the GenerateDeploymentManifest task. In the previous exam-
ple, you are using the usual convention of naming deployment manifests with the .application
extension.

Earlier we talked about signing manifests. After you define the task that generates the
application or deployment manifest, you can use the SignManifest task to sign the manifest
with a certificate:

<SignFile
CertificateThumbprint="$(CertificateThumbprint)"
SigningTarget="@(DeployManifest)"/>

The SignFile task takes a certificate thumbprint and a manifest file and signs the manifest
with the certificate.

The MSBuild script for this example is included with the solution, and both are packaged
in a file at http://sayedhashimi.com/downloads/book/AutomatedDeployment.zip. Note that for
the script to work, you’ll need to paste in a certificate thumbprint into the script.

Looking at Some Common ClickOnce Scenarios
We’ll now talk about some common scenarios with regard to ClickOnce deployments.

Passing Parameters to a ClickOnce Application
ClickOnce supports a mechanism where you can pass the ClickOnce-deployed application
parameters. By default, this option is not enabled when you configure an application for
deployment using Visual Studio 2005. To enable arguments to be passed to your application,
go to Project Properties ➤ Publish, and click the Options button. In the Publish Options dialog
box, check the Allow URL Parameters to Be Passed to Application option. To pass parameters,
you can then construct the URL to your deployment manifest with URL parameters such as
http://localhost/ClickOnceURLParams/ClickOnceURLParams.application?username=sayed&
password=mypass.

You can retrieve URL parameters by using the HttpUtility class in the System.Web assembly.
The following code snippet demonstrates this:

private void DisplayURLParameters()
{

try
{

Uri appUri = System.Deployment.Application.ApplicationDeployment.
CurrentDeployment.ActivationUri;
if (appUri != null)
{

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS246

NameValueCollection parms =
HttpUtility.ParseQueryString(appUri.AbsoluteUri);
if (parms != null)
{

paramCountLbl.Text = parms.Count.ToString();
usernameLbl.Text = parms[0];
pwdLbl.Text = parms[1];

}
else
{

MessageBox.Show("no parameters passed to application");
}

}
}
catch (Exception ee)
{

MessageBox.Show(ee.Message);
}

}

The DisplayURLParameters method gets the URI to the application using the ActivationUri
property. The method uses the static ParseQueryString method to parse the query string.
You can download the sample application from http://www.sayedhashimi.com/downloads/
ClickOnceURLParams.zip.

The MAGE tool can also create a ClickOnce deployment to support passing URL parame-
ters (similar to Visual Studio 2005). If you are generating a ClickOnce deployment using
MSBuild, then you’ll need to set the TrustUrlParameters property to true when you create
your GenerateDeploymentManifest task. This property is set to false by default.

Note that there is a caveat to passing URL parameters to a ClickOnce-deployed application:
ClickOnce does not support passing URL parameters to the application if the application is
activated from the Start menu shortcut. In other words, you have to activate the application
using a URL. If the user starts the application by going to the Start menu, you will not get the
URL parameters. The URL parameter-passing feature works really well with online applications.
Recall that online applications don’t get Start menu shortcuts (or an entry in Add/Remove
Programs) and are always activated via the URL. With offline applications, the URL parameter
passing works particularly well in situations where the application is passed in a username and
password (and possibly other parameter) on the URL to bypass the user having to log in.

Installing the Publisher Certificate Programmatically with
a Prerequisite
Chapter 7 discussed using trusted publishers with ClickOnce. We said that when your applica-
tion’s deployment manifest is downloaded to the client, the ClickOnce runtime sees whether
the publisher certificate of the application is in the Trusted Publisher store for the logged-in
user. If the trusted publisher certificate is found, then it verifies that the certificate authority
that issued the certificate is in the Root Certificate Authority store. If both of these conditions
pass, then ClickOnce does not display the Unknown Publisher security dialog box to the user.

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS 247

In Chapter 7 we showed that you can manually take a certificate and install it in the two
certificate stores using Visual Studio 2005. In an enterprise environment, it’s not possible to
get to all of the clients and do this step. Generally, you do this using a network setup package
(such as Tivoli or SMS) prior to users installing the application. If this is possible in your environ-
ment, then this option is preferable. If not, you can install the certificate that your application is
signed with to the two stores using a custom prerequisite. The idea here is to write a small MSI
that uses a custom installer action to put the certificate into the desired stores. Here is a custom
installer action class that does this:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Configuration.Install;
using System.Security.Cryptography.X509Certificates;
using System.Reflection;

namespace Installers
{

[RunInstaller(true)]
public partial class CertInstaller : Installer
{

// the certificate is packaged as
// part of this assembly. The following path refers
// to the certificate using a fully qualified name.
private static readonly String CERTIFICATE_PATH

= "Installers.deploycert.cer";

public CertInstaller()
{

InitializeComponent();
}
public override void Install(System.Collections.IDictionary stateSaver)
{

base.Install(stateSaver);
// we have to put the certificate in two stores:
// the Trusted Root Certification Authorities store and
// the Trusted Publisher store.

Stream certStream = null;
X509Store rootStore = null, publisherStore = null;
try
{

// get a reference to the root store
rootStore = new X509Store("Root", StoreLocation.LocalMachine);

if (rootStore != null)
{

// open it with write access

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS248

rootStore.Open(OpenFlags.ReadWrite);
// get a reference to the Trusted Publisher store
publisherStore

= new X509Store("TrustedPublisher", StoreLocation.LocalMachine);

if (publisherStore != null)
{

// open it with write access
publisherStore.Open(OpenFlags.ReadWrite);
// get the certificate. Note that the certificate
// is an embedded resource in this assembly.
Assembly asm = Assembly.GetAssembly(this.GetType());
if (asm != null)
{

certStream = asm.GetManifestResourceStream
(CertInstaller.CERTIFICATE_PATH);

if (certStream != null)
{

// read the certificate
BinaryReader reader = new BinaryReader(certStream);
byte[] certData = reader.
ReadBytes((int)certStream.Length);

// create a certificate object
X509Certificate2 cert =

new X509Certificate2(certData);
if (cert != null)
{

// add it to the root store
rootStore.Add(cert);
// add it to the Trusted Publisher store
publisherStore.Add(cert);

}
}

}
}

}
}
finally
{

if (rootStore != null)
{

rootStore.Close();
}
if (publisherStore != null)
{

publisherStore.Close();
}

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS 249

if (certStream != null)
{

certStream.Close();
}

}
}

}
}

This installer class overrides the Install method of the base class to install the certificate
to the two stores. As shown, the method gets references to the Root Certificate Authority store
and the Trusted Publisher store (using the X509Store class) and then adds the certificate (an
instance of the X509Certificate2 class) to each store. Note that if the certificate already exists
in these stores, calling the add method again doesn’t create a duplicate.

Creating File Type Associations for ClickOnce Deployments
Windows Forms applications often work with various file formats. For example, an application
that creates picture albums or allows for picture manipulation likely supports the Joint Photo-
graphic Experts Group (JPEG) file format and the Graphics Interchange Format (GIF). Similarly,
it’s not rare for an application to produce/consume a proprietary file format. When this is the
case, it helps if the deployment technology supports registering the various file types during
the initial install of the application. Unfortunately, ClickOnce does not support file type regis-
tration out of the box. You can solve this problem in a couple of ways, however. The first, and
recommended, approach is to use a custom prerequisite that does the registration for you.
The second option is to take advantage of the following well-known facts:

• After ClickOnce installs an application, it immediately launches it.

• The ClickOnce APIs provides a way for you to detect whether the application is running
for the first time.

You can use the IsFirstRun property on the ApplicationDeployment object to determine
whether the application is running for the first time:

if (System.Deployment.Application.
ApplicationDeployment.

CurrentDeployment.IsFirstRun)
{

// do file registration here
}

If IsFirstRun returns true, then register the file types that your application works with.
This approach is not recommended, however, because it creates an additional problem

for you when the application needs to be removed from the machine. That is, when the appli-
cation is uninstalled, how do you unregister the file associations? ClickOnce doesn’t provide
a mechanism for you to plug into the install, so creating file associations in this manner ends
up with a dirty uninstall scenario. Therefore, it is recommended that you stick with using
a custom prerequisite.

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS250

Both of these approaches have a compromise. Using a prerequisite package, for example,
requires the user installing the application to have administrator privileges (this is a Windows
Installer requirement). The second option requires full trust because, at the least, you need to
query the IsFirstRun property, which demands full trust.

Creating a Desktop Icon for a ClickOnce-Deployed Application
ClickOnce does not support creating desktop icons. If this is a requirement, you can take
advantage of the same principles we talked about earlier. That is, you can either opt to use
a prerequisite package or use the ClickOnce APIs. Again, consider the side effects before
jumping in.

Requiring a Prerequisite After the Initial Install
We’ve talked at length about deploying prerequisites with ClickOnce applications. You know
that when an application is installed for the first time, the user can run a bootstrapper pack-
age that can check for and install the application’s prerequisite list. This works great for the
initial install, but what happens if an application develops a prerequisite in a later version?
That is, what happens if you deploy version 1.0 and then in version 2.0 you need an additional
prerequisite? For most applications, users will likely activate a ClickOnce application either by
going to the Start menu shortcut or by clicking a link that points to the deployment manifest.
In these scenarios, you’ll have to account for how the user needs to be instructed to download
and install the new prerequisite. You have a couple of options.

Option 1: Use a Customized Launch Page and Have Users Always Launch the Application
by Running the Bootstrapper Package
The general procedure of deploying a ClickOnce application is to write the application, create
its prerequisites, and then publish the application to, for example, a Web server. Users are then
sent a link to the deployment manifest or a launch page for the application. For example, this
can be something similar to the publish.htm page that Visual Studio 2005 generates. Most
organizations generally customize the launch page and send users the link to this page rather
than distributing the link to the deployment manifest. The launch page serves several purposes:

• It can be used to give users an overview of the application.

• It tells users about the prerequisites of the application and how to run the bootstrapper
that can install them, prior to running the application.

• It gives users information about future versions and possibly helpful hints.

• It offers security warnings.

Having a launch page like this not only provides the previous benefits, but you can use it
to instruct users to click a link that always kicks off the boostrapper rather than a link that runs
the deployment manifest. This ensures that if an additional prerequisite is added to an update,
the prerequisite will be installed prior to running the application.

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS 251

Option 2: Deploy an Update to Notify Users to Install the Prerequisite
It may not be desirable to have users always come to the launch page to run your application,
especially with applications that support offline capabilities where users always launch the
application from the Start menu shortcut. In these scenarios you can take a different approach.
You can deploy a tiny update to your application, ahead of the actual update, to simply instruct
users of the prerequisite for the next version. For example, you could create a What’s Coming
dialog box and have instructions for users to go to the launch page to run the bootstrapper
setup package. This option is attractive because you can do sophisticated checks to ensure
that all of your users have run the bootstrapper package. For example, you deploy an update
with the What’s Coming dialog box. This dialog box provides an overview of what is coming in
the next version and provides a link for more information about the next version. The link points
to the launch page. When the user browses to the launch page, you can run server-side code to
record that the user read the page and if the user clicks a button or a link to run the bootstrap-
per to install the prerequisite, you can then run server-side code to record that the user ran the
setup package. Moreover, in your application you can check to see whether the prerequisite
has been installed and then decide to continue to show the What’s Coming dialog box or not.
Once you think all (or most) users have installed the prerequisite, you can then deploy the real
update.

Option 3: Wait Until the Prerequisite Is Used and Then Show the User a Message After an
Exception
Checking for prerequisites can be as simple as running a piece of code that uses the prerequi-
sites within a try/catch block. If you get an exception, you can direct the user to the launch
page, discussed in the “Option 1” scenario, and have them run the bootstrapper package.

Again, all of the options have pros and cons and thus require considerable attention to
ensure that users receive a seamless update experience (if possible).

Deploying a ClickOnce Application from a CD/DVD
With ClickOnce, you can perform the initial install of your application using removable media
(such as a CD or DVD) while providing updates from a Web server or file server. When would
you want to do this? ClickOnce provides this feature to support the following deployment
scenarios:

• You have a large project, and it is unreasonable for your users to suffer through the initial
install of the application.

• You have a medium/large deployment, but your user base has a slow network
connection.

• Your users have no network connection or their network connection is not stable (they
don’t have connectivity all the time).

As you can see, in all these cases it would be nice if you could put your ClickOnce deployment
on a CD/DVD and at the same time take advantage of automatic updates provided by ClickOnce.
ClickOnce supports this by allowing application publishers to specify an update location (a file
share/Web server). Here are the steps to produce an application that can be installed from
a CD/DVD and updated from a network share/Web server:

CHAPTER 9 ■ CLICKONCE TOOLS AND SCENARIOS252

1. Create a new folder at c:\testpublish\.

2. Create a new Windows Forms application in Visual Studio 2005.

3. Open the Project Designer, and go to the Publish tab.

4. Set the Publish Location to c:\testpublish\.

5. Click the Publish Wizard button.

6. Choose Next in the first dialog box. In the How Will Users Install the Application dialog
box, choose From a CD-ROM or DVD-ROM. Press Next.

7. In the Where Will the Application Check for Updates dialog box, either enter a network
share or create a virtual directory under a Web site that you have used to deploy Click-
Once applications. ClickOnce will use this URL to detect and download updates.

8. In the Ready to Publish dialog box, choose Finish.

Visual Studio will then publish the application to c:\testpublish\. You can then take the
application and burn it onto a CD/DVD. Take the CD/DVD to another machine and run the
setup.exe bootstrapper to install the application. Note that because the entire application is
copied to the CD/DVD, your users don’t need a network connection to install the application.
To get updates, however, a network connection is a necessity.

If you want to test how an update will work, then after you install the application, publish
an update to your update folder and then start the application.

Summary
In this chapter, we discussed three important tools related to ClickOnce. We talked about the
Bootstrapper Manifest Generator (BMG), the Manifest Generation and Editing (MAGE) tool,
and MSBuild. All of the discussions in this chapter related to practical problems. For example,
we showed how you can use the BMG tool to quickly create the product and package XML files
needed to create custom prerequisites. The discussions about the MAGE tools gave four prac-
tical scenarios where the MAGE tool can be useful, and the discussion of MSBuild showed how
to automate the generation of a ClickOnce deployment. All of these tools will be useful as you
work with ClickOnce. The last portion of this chapter talked about some practical ClickOnce
scenarios.

■Symbols
\ backward slash, 56
% character, 48
% notation, 59–62
@ notation, 59–62
; semicolon, 46
$() syntax, 59
_ underscore character, 69

■A
ActivationUri property, 246
AfterBuild target, 32
AfterClean target, 32, 128
AfterCompile target, 32, 128
AfterDropBuild target, 128
AfterEndToEndIteration target, 128
AfterGet target, 128
AfterLabel target, 128
AfterOnBuildBreak target, 128, 132
AfterPublish target, 33
AfterRebuild target, 32
AfterResGen target, 33
AfterResolveReferences target, 33
AfterTest target, 128
Agile template, 111
AL task, 37
aligning elements, 49–53
Ant, 23
application architectures, 14–16
.application file extension, 145, 242
application files, 185–190
application launcher controller, 143
application manifests, 145, 154, 163

creating, 233
viewing dependencies and, 186

application state, persisting, 192
application tier, Team Foundation Build and,

110
applications. See also deploying applications

building with MSBuild, 45–74, 237–245
full trust, 169
isolated application installation and, 138
partial trust, 175–180
types of, 1–3
updating, 141, 166–169

AppStart.exe file, 143
AppStart.exe.config file, 143
architectures, 14–16

ASCII character codes, 49–53
.asmx files, 9
AspNetCompiler task, 37
assemblies, 4

delay-signing, 230
obfuscating, 231

assembly element, 162
assemblyIdentity element, 162
assertions, NUnit and, 86
AssignCulture task, 37

■B
backward slash (\), in project filenames, 56
beforeApplicationStartup element, 163
BeforeBuild target, 32
BeforeClean target, 32, 128
BeforeCompile target, 32, 128
BeforeDropBuild target, 128
BeforeGet target, 128
BeforeLabel target, 128
BeforeOnBuildBreak target, 128, 132
BeforePublish target, 32
BeforeRebuild target, 32
BeforeResGen target, 33
BeforeResolveReferences target, 33
BeforeTest target, 128
BeginEndToEndIteration target, 128
bin folder, 6
binaries, drop location for, 110, 118
BITS (Binary Intelligent Transfer Service), 144
BLL (business logic layer), 14
BMG (Bootstrapper Manifest Generator),

219–227
bootstrapper (Visual Studio), 157

configuring, 182
prerequisites and, 181, 201–205, 210–218
UAB and, 142

BSD make-style build tools, 22
build directory, 118
build events, 84
build location parameters, 118
build logs, 75–106
build machines, 110, 117
build tools, 21–43
build types, 109
build.xml, 23
BuildEventArgs class, 84
BuildEventArgs subclasses, 77

Index

253

BuildNumberOverrideTarget, 128
business logic layer (BLL), 14

■C
CAS (Code Access Security), 173
CAS sandboxes, 154
CDs, deploying ClickOnce applications from,

251
characters, escaped, 48
CheckForUpdateCompleted event, 198
CheckForUpdateProgressChanged event, 198
clean process, 103–106

NUnitTask and, 97
Clean target, 32, 97, 104, 131
CleanDependsOn property, 97, 131
CleanFile, 103
ClickOnce, 5, 144–159

architecture of, 145
common deployment scenarios and,

245–252
deploying prerequisites via, 181–183
desktop icons and, 250
language attribute and, 162
on-demand download facility in, 186
as part of build process, 239–245
security and, 154–159, 169–181
steps in, 148
tools and, 219–252
updating applications via, 166–169
updating/versioning and, 151

ClickOnce APIs, 186, 155–157, 196–201
ClickOnce cache, 165
ClickOnce data directory, 190–201
ClickOnceAndAccess sample application,

193–196
client-server architecture, 14
CMake (Cross Platform Make), 23
CMMI template, 111
code groups, 174
code, placing in source control, 114–117
Codus, 110, 114–123
Compile target, 32
ComputeClickOnceManifestInfo target, 33
computerwide controller, 143
Condition attribute, 26
ConfigFile property, 244
configuring

partial trust applications, 176
prerequisites, 181, 204
trusted publishers, 173
trusted sites, 219
updates, 167
Windows services, 11

console applications, 2, 13
console logger, 75
Contact class, 98–101
content-based evidence, 175

controllers, UAB and, 142
Copy task, 37
CopyLogFiles target, 131
CopyLogFilesDependsOn property, 131
CoreBuild target, 32
CoreCompile target, 32
CreateItem task, 37
CreateProperty task, 37
CreateSatelliteAssemblies target, 33
CreateWorkItem target, 132
creating

applications, with MSBuild, 45–74,
237–245

deployment manifests, 235
desktop icons, for ClickOnce applications,

250
loggers, 77–85
manifest files, via mageui.exe, 232–236
MSBuild files, with IntelliSense, 54
prerequisites, 210–216, 221–227
project files, 24
targets, 27
tasks, 38–42

Cross Platform Make (CMake), 23
Csc task, 37
custom metadata, 57

■D
DAL (data access layer), 14
data files, 185, 190–200
data tier, Team Foundation Build and, 110
DataProtectionPermission, 177
Debug in Zone feature (Visual Studio), 177
delay-signing assemblies, 230
Delete task, 37
dependencies, viewing, 186
Dependencies property, 244
dependency element, 163, 187–190
DependsOn properties, 130
.deploy file extension, 242
deploying applications

file type associations and, 249
incremental building and. See incremental

building
MAGE tool scenarios and, 228–231
MSI deployment and, 139
online/offline, 164
no-touch deployment and, 140
prerequisites for, 1–19
from removable media, 251
side-by-side deployment and, 138
strategies for, 17
via ClickOnce, 144–159, 237–252
deployment element and, 162, 169

deployment manifests, 145, 161–164
creating, 235
modifying, 169

■INDEX254

deploymentProvider element, 163, 165
description element, 162
descriptor files, 206
desktop icons for ClickOnce applications,

creating, 250
.dll files, 4
DnsPermission, 176
Documents node (Visual Studio Team

Explorer pane), 113
DotNetFreeCell, 76
DownloadFileGroupCompleted event, 198
DownloadFileGroupProgressChanged event,

198
drop location, 110, 118
DropBuild target, 131
DropBuildDependsOn property, 131
DVDs, deploying ClickOnce applications

from, 251

■E
EndToEndIteration target, 128, 131
EndToEndIterationDependsOn property, 131
entryPoint element, 164
EntryPoint property, 244
environment variables, 63
EnvironmentPermission, 176
Error element, 69, 71
error handling, Team Build and, 69–73, 131
Error task, 37
escaped characters, 48
EventLogPermission, 177
evidence, 174
.exe files, 4, 242
Exec task, 37
expiration element, 163

■F
file-based loggers, 78
file element, 187–190
file logger, 75
file type associations, 249
FileDialogPermissionson, 176, 178
FileIOPermission, 176
FileLogger parameters, 76
FileLoggerBase class, 81
filenames, backward slash (\) in, 56
FindUnderPath task, 37
formatting output, 48–53
FreeCell game, 76
full trust applications, 169

vs. partial trust applications, 179

■G
GAC (global assembly cache), 5, 190
GBS (GNU Build System), 22
GenerateApplicationManifest target, 33

GenerateApplicationManifest task, 37
GenerateBootstrapper target, 33
GenerateBootstrapper task, 37
GenerateDeploymentManifest target, 33
GenerateDeploymentManifest task, 37
GenerateResource task, 37
GetAssemblyIdentity task, 37
GetChangeSetsOnBuildBreak target, 132
GetFrameworkPath task, 38
GetFrameworkSdkPath task, 38
global assembly cache (GAC), 5, 190
GNU Build System (GBS), 22
GNU Make, 22
Gotdotnet.com, 219

■H
hash element, 190
HelloFromClickOnce, 148–151
HelloTask, 39–42
hosted applications, 2, 13

■I
IContact interface, 98–101
IEventSource interface, 77
ILogger interface, 77
Import element, 25
incremental building, 25, 29, 94–97
InitalizeWorkspace target, 131
InitalizeWorkspaceDependsOn property, 131
Initialize method (ILogger), 79
inputs, 90, 94–97
IntelliSense (Visual Studio), creating/editing

MSBuild files with, 54
IntelliSense in the Zone feature (VB.NET),

178
Internet Explorer, configuring trusted sites

and, 219
IsFirstRun property, 249
isolated application installation, 138
IsolatedStorageFilePermissions, 176
ITask interface, 91
item values, 59–62
ItemGroup element, 25
items, 25, 45

■J
Jam and Cook, 22

■K
KeyContainerPermission, 176

■L
languages, ClickOnce and, 162
LC task, 38
Logger class, 77
Logger events, 78

■INDEX 255

Find it faster at http://superindex.apress.com
/

logger switch, 76, 80
LoggerException, 85
loggers, 75–106

file-based, 78
specifying additional, 75, 80
troubleshooting, 85
writing, 77–85

■M
mage.exe tool, 228–236
mageui.exe tool, 147, 228, 232
make-style build tools, 22
MakeDir task, 38
.manifest file extension, 145, 242
manifest files, 161–164, 179

ClickOnce and, 145
creating via mageui.exe, 232–236
UAB and, 142
writing, 212

Manifest Generation and Editing (MAGE) tool.
See mage.exe tool; mageui.exe tool

MapFileExtensions property, 245
Message task, 38
metadata, 39

custom, 57
well-known, 45–48, 57

Microsoft Program Maintenance Utility
(NMAKE.EXE), 22

MSBuild, 24–43
building applications with, 45–74, 237–245
errors and, 69–73
integrating into Visual Studio, 55
Team Build and, 107

MSBuild files
cleaning, 103–106
elements of, 24–25, 63–69

MSBuild loggers, 75–106
MSBuild projects, 220
MSBuild task, 38
MSF for Agile template, 111
MSF for CMMI template, 111
MSI deployment, 139

■N
n-tier architecture, 15
Name attribute, 27
naming conventions, 64, 69

console application configuration files
and, 13

NAnt, 23
.NET CF (.NET Compact Framework), 10
.NET platform, 23, 24
.NET runtime, downloading, 17
NMake, 22
NMAKE.EXE (Microsoft Program

Maintenance Utility), 22
NTD (no-touch deployment), 140

NUnit framework, 85–89
NUnit GUI runner, 88
NUnit.targets file, 90, 92
NUnitTask, 89–94

executing, 98, 103
NUnitTask files, cleaning, 97
NUnitTask items, 93
NUnitTask.cs file, 90

■O
obfuscation, 231
offline deployments, 164
OleDbPermission, 177
on-demand download facility (ClickOnce),

186
OnBuildBreak target, 131–133
OnBuildBreakDependsOn property, 131
one-tier/two-tier/three-tier architecture, 15
OnError element, 69
online deployments, 164
Opus Make, 22
origin-based evidence, 175
output, formatting, 48–53
OutputManifest property, 244
outputs, 90, 94–97

■P
Package Manifest projects, 220
package manifests (package.xml), 205–210

writing, 212
PackageBinaries target, 128, 131
PackageBinariesDependsOn property, 131
Packages folder, 205, 214
parameters, 91

passing to ClickOnce applications, 245
Parameters property (ILogger), 78
partial trust applications, 175–180
PerformanceCounterPermission, 177
PermCalc.exe utility, 178
permission calculators, 177
permission sets, 174
permissions, 174–181

available vs. actual, 181
prerequisites and, 204

PermissionSet element, 180
pipelines, 21
Pocket PC 2003, 10
PostBuild target, 131
PostBuildDependsOn property, 131
PostBuildEvent target, 32
PreBuildEvent target, 32
predefined targets, 32–37
predefined tasks, 25, 37
prerequisites, 201–216

building custom, 210–216
common ClickOnce scenarios and,

246–252

■INDEX256

creating via BMG tool, 221–227
deploying via ClickOnce, 181–183
installing, 202
later application versions and, 250

presentation layer, 14
PrintingPermission, 176
product manifests (product.xml), 205–210

writing, 212
project files

ASCII character codes for, 49–53
creating, 24
well-known metadata for, 46

properties, 25, 45
$() syntax for, 59
vs. environmental variables, 63
reusing, 64–69

property values, 59–62
PropertyGroup element, 25
public builds, 108

automating/scheduling, 133
Publish target, 33, 237
Publish Wizard, 183
publish.htm page, 165, 183
PublishOnly target, 33

■Q
QMake (Qtopia Build System), 23

■R
ReadLinesFromFile task, 38
Rebuild target, 32
ReflectionPermission, 176
RegisterAssembly task, 38
RegistryPermission, 176
removable media, deploying ClickOnce

applications from, 251
RemoveDir task, 38
RemoveDuplicates task, 38
Reports node (Visual Studio Team Explorer

pane), 114
Required attribute, 41, 92
reserved properties, 26
ResGen target, 33
ResGen task, 38
ResolveAssemblyReference task, 38
ResolveComReference task, 38
ResolveKeySource task, 38
ResolveNativeReference task, 38
ResolveReferences target, 33
Run target, 32
RunAllTests target, 95, 102, 105

■S
scalars, 91
scheduling team builds, 133
SCM (source control management) utilities, 107

security
ClickOnce and, 154–159, 169–181
ClickOnce data directory and, 200

security certificates, 170
security policies, 174
SecurityPermission, 176
semicolon (;), multiple files and, 46
service-oriented architecture (SOA), 16
SGen task, 38
SharePoint Services, TFS and, 110
Shutdown method (ILogger), 78
side-by-side assemblies, 138
side-by-side deployment, 138
Signature element, 164
SignClickOnceDeployment target, 33
SignFile task, 38
SimpleFileLogger class, 78–80
smart clients, 2, 15, 46

deploying via ClickOnce, 190, 144–159
typical deployment for, 18

smart device applications, 2, 10
Smartphone 2003, 10
SOA (service-oriented architecture), 16
SocketPermission, 176
source control management (SCM) utilities,

107
Source Control node (Visual Studio Team

Explorer pane), 114
SQL Server 2005, TFS and, 110
SqlClientPermission, 177
static analysis of permissions, 177
StorePermission, 177
subscription element, 163
System Checks tab (BMG tool), 224
targets, 23, 25, 27–37, 127

creating, 27
reusing, 63–69

Task class, 91
tasks, 23, 25, 37–42

creating, 38–42
UsingTask declaration for, 93

Team Build, 107–135
automating/scheduling, 133
error handling for, 131
extending, 127–131
generated files and, 124
how it works, 123–127
using, 117–123

Team Builds node (Visual Studio Team
Explorer pane), 114

Team Foundation Build, 108–112
Team Foundation Build client, 109
Team Foundation Server (TFS), 107–110
team projects, in VSTS, 110
TeamBuild target, 131
TeamBuildDependsOn property, 131
test cases, 85–103

■INDEX 257

Find it faster at http://superindex.apress.com
/

Test target, 131
TestDependsOn property, 131
TFS (Team Foundation Server), 107–110
tfsbuild.exe utility, 133
TFSBuild.proj file, 124, 127, 133
TFSBuild.rsp file, 124
thick clients, 3, 15, 137
thin clients, 3, 14, 137

typical deployment for, 18
three-tier architecture, 15
tools, 219–252

BMG (Bootstrapper Manifest Generator),
219–227

build, 24–43
mage.exe, 228–236
mageui.exe, 147, 228, 232
make-style build, 22
source control management, 107
tfsbuild.exe, 133
VSTA/VSTO, 2

Touch task, 38
transforms, 61
troubleshooting

loggers, 85
MSBuild errors and, 69–73

trust licenses, 154
trusted publishers, 154, 170

installing programmatically, 246–249
trusted sites, configuring via Internet

Explorer, 219
trustInfo element, 164, 179
TrustUrlParameters property, 246
two-tier architecture, 15

■U
UAB (updater application block), 141
UIPermission, 176
underscore (_) character, 69
unit tests, 85–106
UnregisterAssembly task, 38
update element, 163
update notification, 167
update policies, configuring, 167
UpdateCompleted event, 198
updater application block (UAB), 141
updating applications, 166–169

ClickOnce and, 151
UAB for, 141

URL parameters, passing to ClickOnce
applications, 245

UsingTask declaration, 93

■V
VB.NET, IntelliSense in the Zone feature and,

178
Vbc task, 38

VCBuild task, 38
VCOverrides.vsprops file, 124
vectors, 91
verbosity, 76, 83
Verbosity property (ILogger), 78
versioning, ClickOnce and, 151
Visual SourceSafe, 107
Visual Studio, 24, 54
Visual Studio 2005

ClickOnce and, 147
Debug in Zone feature in, 177
prerequisites and, 201
unit testing framework and, 85

Visual Studio Team System (VSTS), 107
Visual Studio Tools for Applications (VSTA), 2
Visual Studio Tools for the Microsoft Office

System (VSTO), 2

■W
Warning task, 38
Web applications, 2, 6
Web services, 2, 9
web sites

Gotdotnet.com, 219
NUnit, 85
Visual Studio Team System, 107

web.config file, 6, 8
WebBrowserPermission, 176
WebPermission, 177
well-known metadata, 45–48, 57
whitespace, 51
wildcards, multiple files and, 46
Windows CE 5.0, 10
Windows Forms applications. See smart

clients
Windows FreeCell game, 76
Windows Installer, writing, 210
Windows services, 2, 11
Windows SharePoint Services, TFS and, 110
Windows XP, side-by-side deployment and,

138
Work Items node (Visual Studio Team

Explorer pane), 113
WorkingWithPreReqs sample application,

202
WorkspaceMapping.xml file, 124
WriteLinesToFile task, 38, 103

■X
XML Schema Document (XSD), 54
XmlLogger, 80–83

■INDEX258

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

